3 research outputs found

    Agencia y cuidados en personas que viven con enfermedades crónicas no transmisibles

    Get PDF
    Este documento reúne los resultados obtenidos a lo largo de la ejecución del proyecto titulado Percepciones de Riesgos y/o peligros para la salud en varones y mujeres de sectores medios de la ciudad de Buenos Aires (UBACyT SO12, programación 2008-2010), dirigido por la Dra. Ana Domínguez Mon en el Instituto de Investigaciones Gino Germani de la Facultad de Ciencias Sociales de la Universidad de Buenos Aires. El objetivo general del trabajo ha sido describir y analizar las prácticas de cuidado de varones y mujeres de sectores medios porteños en relación a las enfermedades crónicas no transmisibles. Los objetivos específicos fueron la caracterización epidemiológica de las enfermedades crónicas en la ciudad de Buenos Aires; la sistematización y el análisis de paradigmas conceptuales y de propuestas metodológicas cualitativas desde el campo socio-antropológico en las últimas décadas del siglo pasado; la revisión de la categoría estilo de vida a partir del análisis etnográfico de los datos de campo en relación a la producción de cuidados a la salud y las enfermedades crónicas; la particularidad de las prácticas de cuidados de las mujeres que viven con las enfermedades crónicas; la revisión conceptual de la categoría cuidados en relación a la salud. Finalmente, un estudio de caso etnográfico en relación a la hidatidosis, realizado en el área rural del norte andino del Chubut, permite reconocer la dimensión política del abordaje sanitario de esta enfermedad crónica a comienzos de siglo XXI

    Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process

    Full text link
    [EN] A pilot-scale microalgae (Chlorella spp.) and primary sludge anaerobic co-digestion (ACoD) plant was run for one year in an anaerobic membrane bioreactor (AnMBR) at 35 °C, 70 d solids retention time and 30 d hydraulic retention time, showing high stability in terms of pH and VFA concentration. The plant achieved a high degree of microalgae and primary sludge substrate degradation, resulting in a methane yield of 370 mLCH4·gVSinf¿1. Nutrient-rich effluent streams (685 mgN·L¿1 and 145 mgP·L¿1 in digestate and 395 mgNH4-N·L¿1 and 37 mgPO4-P·L¿1 in permeate) were obtained, allowing posterior nutrient recovery. Ammonium was recovered from the permeate as ammonia sulphate through a hydrophobic polypropylene hollow fibre membrane contactor, achieving 99% nitrogen recovery efficiency. However, phosphorus recovery through processes such as struvite precipitation was not applied since only 26% of the phosphate was available in the effluent. Composting process of the digestate coming from the ACoD pilot plant was assessed on laboratory-scale Dewar reactors, as was the conventional sludge compost from an industrial WWTP digestion process, obtaining similar values from both. Sanitised (free of Escherichia coli and Salmonella spp.) and stable compost (respirometric index at 37 °C below 0.5 mgO 2 g organic matter¿1·h¿1) was obtained from both sludges.This research work was supported by the Spanish Ministry of Science and Innovation (Projects CTM 2014-54980-C2-1-R and CTM 2014- 54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), which are gratefully acknowledged. It was also supported by the Spanish Ministry of Science and Innovation via a pre/doctoral FPI fellowship to the first author (BES-2015-071884, Project CTM 2014- 54980-C2-1-R). Technical support from the Entidad Pública de Saneamiento de Aguas Residuales de la Comunidad Valenciana is also gratefully acknowledged.Serna-García, R.; Ruiz-Barriga, P.; Noriega-Hevia, G.; Serralta Sevilla, J.; Paches Giner, MAV.; Bouzas, A. (2021). Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process. Journal of Environmental Management. 281:1-9. https://doi.org/10.1016/j.jenvman.2020.111890S19281Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina-Grima, E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013-9022. doi:10.1007/s00253-016-7835-7Barat, R., Bouzas, A., Martí, N., Ferrer, J., & Seco, A. (2009). Precipitation assessment in wastewater treatment plants operated for biological nutrient removal: A case study in Murcia, Spain. Journal of Environmental Management, 90(2), 850-857. doi:10.1016/j.jenvman.2008.02.001Barrena Gómez, R., Vázquez Lima, F., Gordillo Bolasell, M. A., Gea, T., & Sánchez Ferrer, A. (2005). Respirometric assays at fixed and process temperatures to monitor composting process. Bioresource Technology, 96(10), 1153-1159. doi:10.1016/j.biortech.2004.09.026Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology, 59(6), 1069-1076. doi:10.2166/wst.2009.045Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160-170. doi:10.1016/j.biortech.2012.05.139Doyle, J. D., & Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36(16), 3925-3940. doi:10.1016/s0043-1354(02)00126-4Dube, P. J., Vanotti, M. B., Szogi, A. A., & García-González, M. C. (2016). Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology. Waste Management, 49, 372-377. doi:10.1016/j.wasman.2015.12.011Fuchs, W., & Drosg, B. (2013). Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Science and Technology, 67(9), 1984-1993. doi:10.2166/wst.2013.075Gao, M., Liang, F., Yu, A., Li, B., & Yang, L. (2010). Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere, 78(5), 614-619. doi:10.1016/j.chemosphere.2009.10.056Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass and Bioenergy, 40, 105-111. doi:10.1016/j.biombioe.2012.02.008Greses, S., Gaby, J. C., Aguado, D., Ferrer, J., Seco, A., & Horn, S. J. (2017). Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Research, 27, 121-130. doi:10.1016/j.algal.2017.09.002Greses, S., Zamorano-López, N., Borrás, L., Ferrer, J., Seco, A., & Aguado, D. (2018). Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. Journal of Environmental Management, 218, 425-434. doi:10.1016/j.jenvman.2018.04.086Huang, G. F., Wong, J. W. C., Wu, Q. T., & Nagar, B. B. (2004). Effect of C/N on composting of pig manure with sawdust. Waste Management, 24(8), 805-813. doi:10.1016/j.wasman.2004.03.011Khalid, A. A. H., Yaakob, Z., Abdullah, S. R. S., & Takriff, M. S. (2019). Assessing the feasibility of microalgae cultivation in agricultural wastewater: The nutrient characteristics. Environmental Technology & Innovation, 15, 100402. doi:10.1016/j.eti.2019.100402Kartohardjono, S., Iwan Fermi, M., Yuliusman, Y., Elkardiana, K., Putra Sangaji, A., & Maghfirwan Ramadhan, A. (2015). The Removal of Dissolved Ammonia from Wastewater through a Polypropylene Hollow Fiber Membrane Contactor. International Journal of Technology, 6(7), 1146. doi:10.14716/ijtech.v6i7.1845Magdalena, J., Ballesteros, M., & González-Fernandez, C. (2018). Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule. Molecules, 23(5), 1098. doi:10.3390/molecules23051098Manu, M. K., Kumar, R., & Garg, A. (2017). Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum. Bioresource Technology, 234, 167-177. doi:10.1016/j.biortech.2017.03.023Marti, N., Ferrer, J., Seco, A., & Bouzas, A. (2008). Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Research, 42(18), 4609-4618. doi:10.1016/j.watres.2008.08.012Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 141(1-3), 67-74. doi:10.1016/j.cej.2007.10.023Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., & Carrère, H. (2015). New opportunities for agricultural digestate valorization: current situation and perspectives. Energy & Environmental Science, 8(9), 2600-2621. doi:10.1039/c5ee01633aNag, R., Auer, A., Markey, B. K., Whyte, P., Nolan, S., O’Flaherty, V., … Cummins, E. (2019). Anaerobic digestion of agricultural manure and biomass – Critical indicators of risk and knowledge gaps. Science of The Total Environment, 690, 460-479. doi:10.1016/j.scitotenv.2019.06.512Nikaeen, M., Nafez, A. H., Bina, B., Nabavi, B. F., & Hassanzadeh, A. (2015). Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Management, 39, 104-110. doi:10.1016/j.wasman.2015.01.028Nkoa, R. (2013). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, 34(2), 473-492. doi:10.1007/s13593-013-0196-zNoriega-Hevia, G., Serralta, J., Borrás, L., Seco, A., & Ferrer, J. (2020). Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution. Journal of Environmental Chemical Engineering, 8(4), 103880. doi:10.1016/j.jece.2020.103880Passos, F., Hernández-Mariné, M., García, J., & Ferrer, I. (2014). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49, 351-359. doi:10.1016/j.watres.2013.10.013Puyuelo, B., Ponsá, S., Gea, T., & Sánchez, A. (2011). Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere, 85(4), 653-659. doi:10.1016/j.chemosphere.2011.07.014Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J.-P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology, 102(1), 200-206. doi:10.1016/j.biortech.2010.06.146Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492Serna-García, R., Zamorano-López, N., Seco, A., & Bouzas, A. (2020). Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresource Technology, 298, 122521. doi:10.1016/j.biortech.2019.122521Serna-García, R., Mora-Sánchez, J. F., Sanchis-Perucho, P., Bouzas, A., & Seco, A. (2020). Anaerobic membrane bioreactor (AnMBR) scale-up from laboratory to pilot-scale for microalgae and primary sludge co-digestion: Biological and filtration assessment. Bioresource Technology, 316, 123930. doi:10.1016/j.biortech.2020.123930Solé-Bundó, M., Salvadó, H., Passos, F., Garfí, M., & Ferrer, I. (2018). Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules, 23(9), 2096. doi:10.3390/molecules23092096Solé-Bundó, M., Garfí, M., Matamoros, V., & Ferrer, I. (2019). Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Science of The Total Environment, 660, 974-981. doi:10.1016/j.scitotenv.2019.01.011Ullah, K., Ahmad, M., Sofia, Sharma, V. K., Lu, P., Harvey, A., … Sultana, S. (2015). Assessing the potential of algal biomass opportunities for bioenergy industry: A review. Fuel, 143, 414-423. doi:10.1016/j.fuel.2014.10.064Wang, M., Lee, E., Dilbeck, M. P., Liebelt, M., Zhang, Q., & Ergas, S. J. (2016). Thermal pretreatment of microalgae for biomethane production: experimental studies, kinetics and energy analysis. Journal of Chemical Technology & Biotechnology, 92(2), 399-407. doi:10.1002/jctb.501
    corecore