9,396 research outputs found
Quantum measurements and Paul traps in gravitational backgrounds
In the present work we solve the motion equations of a particle in a Paul
trap embeded in the gravitational field of a spherically symmetric mass. One of
the ideas behind this work concerns the analysis of the effects that the
gravity--induced quantum noise, stemming from the bodies in the neighborhood of
the Paul trap, could have upon the enhancement of the quantum behavior of this
system. This will be done considering a series expansion for the gravitational
field of the source, and including in the Hamiltonian of the Paul trap only the
first two terms. Higher--order contributions will be introduced as part of the
environment of the system, and in consequence will not appear in the
Hamiltonian. In other words, we put forward an argument that allows us to
differentiate those gravitational degrees of freedom that will appear as an
uncontrollable influence on the Paul trap. Along the ideas of the so called
restricted path integral formalism, we take into account the continuous
monitoring of the position of our particle, and in consequence the
corresponding propagators and probabilities, associated with the different
measurements outputs, are obtained.
Afterwards, the differential equation related to a quantum nondemolition
variable is posed and solved, i.e., a family of quantum nondemolition
parameters is obtained. Finally, a qualitative analysis of the effects on the
system, of the gravity--induced environment, will be done.Comment: Accepted in International Journal of Modern Physics
Low-distortion slow light using two absorption resonances
We consider group delay and broadening using two strongly absorbing and
widely spaced resonances. We derive relations which show that very large pulse
bandwidths coupled with large group delays and small broadening can be
achieved. Unlike single resonance systems, the dispersive broadening dominates
the absorptive broadening which leads to a dramatic increase in the possible
group delay. We show that the double resonance systems are excellent candidates
for realizing all-optical delay lines. We report on an experiment which
achieved up to 50 pulse delays with 40% broadening.Comment: 4 pages 4 figure
Long-duration exercise at moderate work loads
Metabolic effects of long duration exercise at moderate work loads including tables of heart rate, rectal temperature, minute volume, water balance, and respiratory quotien
Evaluating River Water Quality Modelling Uncertainties at Multiple Time and Space Scales
Maintaining healthy river ecosystems is crucial for sustaining human needs and biodiversity. Therefore, accurately assessing the ecological status of river systems and their response to short and long-term pollution events is paramount. Water quality modelling is a useful tool for gaining a better understanding of the river system and for simulating conditions that may not be obtained by field monitoring. Environmental models can be highly unreliable due to our limited knowledge of environmental systems, the difficulty of mathematically and physically representing these systems, and limitations to the data used to develop, calibrate and run these models. The extensive range of physical, biochemical and ecological processes within river systems is represented by a wide variety of models: from simpler one-dimensional advection dispersion equation (1D ADE) models to complex eutrophication models. Gaining an understanding of uncertainties within catchment water quality models across different spatial and temporal scales for the evaluation and regulation of water compliance is still required. Thus, this thesis work 1) evaluates the impact of parameter uncertainty from the longitudinal dispersion coefficient on the one-dimensional advection-dispersion model and water quality compliance at the reach scale and sub-hourly scale, 2) evaluates the impact of input data uncertainty and the representation of ecological processes on an integrated catchment water quality model, and 3) evaluates the impact of one-dimensional model structures on water quality regulation. Findings from this thesis stress the importance of longitudinal mixing specifically in the sub daily time scales and in-between 10s of meters to 100s of meters. After the sub daily time scale, other biological and ecological processes become more important than longitudinal mixing for representing the seasonal dynamics of dissolved oxygen (DO). The thorough representation of the dominant ecological processes assists in obtaining accurate seasonal patterns even under input data variability. Furthermore, the use of incorrect model structures for water quality evaluation and regulation leads to considerable sources of uncertainty when applying duration over threshold regulation within the first 100s of meters and sub hourly time scale
Recommended from our members
Planar laser induced fluorescence for temperature measurement of optical thermocavitation
Pulsed laser-induced cavitation, has been the subject of many studies describing bubble growth, collapse and ensuing shock waves. To a lesser extent, hydrodynamics of continuous wave (CW) cavitation or thermocavitation have also been reported. However, the temperature field around these bubbles has not been measured, partly because a sensor placed in the fluid would interfere with the bubble dynamics, but also because the short-lived bubble lifetimes (∼70–200 µs) demand high sampling rates which are costly to achieve via infrared (IR) imaging. Planar laser-induced fluorescence (PLIF) provides a non-intrusive alternative technique to costly IR imaging to measure the temperature around laser-induced cavitation bubbles. A 440 nm laser sheet excites rhodamine-B dye to fluoresce while thermocavitation is induced by a CW 810 nm laser. Post-calibration, the fluorescence intensity captured with a high-speed Phantom Miro camera is correlated to temperature field adjacent to the bubble. Using shadowgraphy and PLIF, a significant decrease in sensible heat is observed in the nucleation site– temperature decreases after bubble collapse and the initial heated volume of liquid shrinks. Based on irradiation time and temperature, the provided optical energy is estimated to be converted up to 50% into acoustic energy based on the bubble's size, with larger bubbles converting larger percentages
Analysing temporal performance profiles of UAV operators using time series clustering
The continuing growth in the use of Unmanned Aerial Vehicles (UAVs) is causing an important social step forward in the performance of many sensitive tasks, reducing both human and economical risks. The work of UAV operators is a key aspect to guarantee the success of this kind of tasks, and thus UAV operations are studied in many research fields, ranging from human factors to data analysis and machine learning. The present work aims to describe the behaviour of operators over time using a profile-based model where the evolution of the operator performance during a mission is the main unit of measure. In order to compare how different operators act throughout a mission, we describe a methodology based of multivariate-time series clustering to define and analyse a set of representative temporal performance profiles. The proposed methodology is applied in a multi-UAV simulation environment with inexperienced operators, obtaining a fair description of the temporal behavioural patterns followed during the course of the simulation
Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle
The relation between Einstein equivalence principle and a continuous quantum
measurement is analyzed in the context of the recently proposed
flavor-oscillation clocks, an idea pioneered by Ahluwalia and Burgard (Gen. Rel
Grav. Errata 29, 681 (1997)). We will calculate the measurement outputs if a
flavor-oscillation clock, which is immersed in a gravitational field, is
subject to a continuous quantum measurement. Afterwards, resorting to the weak
equivalence principle, we obtain the corresponding quantities in a freely
falling reference frame. Finally, comparing this last result with the
measurement outputs that would appear in a Minkowskian spacetime it will be
found that they do not coincide, in other words, we have a violation of
Einstein equivalence principle. This violation appears in two different forms,
namely: (i) the oscillation frequency in a freely falling reference frame does
not match with the case predicted by general relativity, a feature previously
obtained by Ahluwalia; (ii) the probability distribution of the measurement
outputs, obtained by an observer in a freely falling reference frame, does not
coincide with the results that would appear in the case of a Minkowskian
spacetime.Comment: 16 pages, accepted in Mod. Phys. Letts.
The role of the quantum properties of gravitational radiation in the dete ction of gravitational waves
The role that the quantum properties of a gravitational wave could play in
the detection of gravitational radiation is analyzed. It is not only
corroborated that in the current laser-interferometric detectors the resolution
of the experimental apparatus could lie very far from the corresponding quantum
threshold (thus the backreaction effect of the measuring device upon the
gravitational wave is negligible), but it is also suggested that the
consideration of the quantum properties of the wave could entail the definition
of dispersion of the measurement outputs. This dispersion would be a function
not only of the sensitivity of the measuring device, but also of the
interaction time (between measuring device and gravitational radiation) and of
the arm length of the corresponding laser- interferometer. It would have a
minimum limit, and the introduction of the current experimental parameters
insinuates that the dispersion of the existing proposals could lie very far
from this minimum, which means that they would show a very large dispersion.Comment: 19 pages, Latex (use epsfig.sty
- …