8,827 research outputs found

    Quantum measurements and Paul traps in gravitational backgrounds

    Get PDF
    In the present work we solve the motion equations of a particle in a Paul trap embeded in the gravitational field of a spherically symmetric mass. One of the ideas behind this work concerns the analysis of the effects that the gravity--induced quantum noise, stemming from the bodies in the neighborhood of the Paul trap, could have upon the enhancement of the quantum behavior of this system. This will be done considering a series expansion for the gravitational field of the source, and including in the Hamiltonian of the Paul trap only the first two terms. Higher--order contributions will be introduced as part of the environment of the system, and in consequence will not appear in the Hamiltonian. In other words, we put forward an argument that allows us to differentiate those gravitational degrees of freedom that will appear as an uncontrollable influence on the Paul trap. Along the ideas of the so called restricted path integral formalism, we take into account the continuous monitoring of the position of our particle, and in consequence the corresponding propagators and probabilities, associated with the different measurements outputs, are obtained. Afterwards, the differential equation related to a quantum nondemolition variable is posed and solved, i.e., a family of quantum nondemolition parameters is obtained. Finally, a qualitative analysis of the effects on the system, of the gravity--induced environment, will be done.Comment: Accepted in International Journal of Modern Physics

    Low-distortion slow light using two absorption resonances

    Get PDF
    We consider group delay and broadening using two strongly absorbing and widely spaced resonances. We derive relations which show that very large pulse bandwidths coupled with large group delays and small broadening can be achieved. Unlike single resonance systems, the dispersive broadening dominates the absorptive broadening which leads to a dramatic increase in the possible group delay. We show that the double resonance systems are excellent candidates for realizing all-optical delay lines. We report on an experiment which achieved up to 50 pulse delays with 40% broadening.Comment: 4 pages 4 figure

    Long-duration exercise at moderate work loads

    Get PDF
    Metabolic effects of long duration exercise at moderate work loads including tables of heart rate, rectal temperature, minute volume, water balance, and respiratory quotien

    Philippine Basic Education System towards the Cultivation of Culture of Entrepreneurship and Innovation

    Full text link

    Evaluating River Water Quality Modelling Uncertainties at Multiple Time and Space Scales

    Get PDF
    Maintaining healthy river ecosystems is crucial for sustaining human needs and biodiversity. Therefore, accurately assessing the ecological status of river systems and their response to short and long-term pollution events is paramount. Water quality modelling is a useful tool for gaining a better understanding of the river system and for simulating conditions that may not be obtained by field monitoring. Environmental models can be highly unreliable due to our limited knowledge of environmental systems, the difficulty of mathematically and physically representing these systems, and limitations to the data used to develop, calibrate and run these models. The extensive range of physical, biochemical and ecological processes within river systems is represented by a wide variety of models: from simpler one-dimensional advection dispersion equation (1D ADE) models to complex eutrophication models. Gaining an understanding of uncertainties within catchment water quality models across different spatial and temporal scales for the evaluation and regulation of water compliance is still required. Thus, this thesis work 1) evaluates the impact of parameter uncertainty from the longitudinal dispersion coefficient on the one-dimensional advection-dispersion model and water quality compliance at the reach scale and sub-hourly scale, 2) evaluates the impact of input data uncertainty and the representation of ecological processes on an integrated catchment water quality model, and 3) evaluates the impact of one-dimensional model structures on water quality regulation. Findings from this thesis stress the importance of longitudinal mixing specifically in the sub daily time scales and in-between 10s of meters to 100s of meters. After the sub daily time scale, other biological and ecological processes become more important than longitudinal mixing for representing the seasonal dynamics of dissolved oxygen (DO). The thorough representation of the dominant ecological processes assists in obtaining accurate seasonal patterns even under input data variability. Furthermore, the use of incorrect model structures for water quality evaluation and regulation leads to considerable sources of uncertainty when applying duration over threshold regulation within the first 100s of meters and sub hourly time scale

    Analysing temporal performance profiles of UAV operators using time series clustering

    Get PDF
    The continuing growth in the use of Unmanned Aerial Vehicles (UAVs) is causing an important social step forward in the performance of many sensitive tasks, reducing both human and economical risks. The work of UAV operators is a key aspect to guarantee the success of this kind of tasks, and thus UAV operations are studied in many research fields, ranging from human factors to data analysis and machine learning. The present work aims to describe the behaviour of operators over time using a profile-based model where the evolution of the operator performance during a mission is the main unit of measure. In order to compare how different operators act throughout a mission, we describe a methodology based of multivariate-time series clustering to define and analyse a set of representative temporal performance profiles. The proposed methodology is applied in a multi-UAV simulation environment with inexperienced operators, obtaining a fair description of the temporal behavioural patterns followed during the course of the simulation

    Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle

    Get PDF
    The relation between Einstein equivalence principle and a continuous quantum measurement is analyzed in the context of the recently proposed flavor-oscillation clocks, an idea pioneered by Ahluwalia and Burgard (Gen. Rel Grav. Errata 29, 681 (1997)). We will calculate the measurement outputs if a flavor-oscillation clock, which is immersed in a gravitational field, is subject to a continuous quantum measurement. Afterwards, resorting to the weak equivalence principle, we obtain the corresponding quantities in a freely falling reference frame. Finally, comparing this last result with the measurement outputs that would appear in a Minkowskian spacetime it will be found that they do not coincide, in other words, we have a violation of Einstein equivalence principle. This violation appears in two different forms, namely: (i) the oscillation frequency in a freely falling reference frame does not match with the case predicted by general relativity, a feature previously obtained by Ahluwalia; (ii) the probability distribution of the measurement outputs, obtained by an observer in a freely falling reference frame, does not coincide with the results that would appear in the case of a Minkowskian spacetime.Comment: 16 pages, accepted in Mod. Phys. Letts.

    The role of the quantum properties of gravitational radiation in the dete ction of gravitational waves

    Get PDF
    The role that the quantum properties of a gravitational wave could play in the detection of gravitational radiation is analyzed. It is not only corroborated that in the current laser-interferometric detectors the resolution of the experimental apparatus could lie very far from the corresponding quantum threshold (thus the backreaction effect of the measuring device upon the gravitational wave is negligible), but it is also suggested that the consideration of the quantum properties of the wave could entail the definition of dispersion of the measurement outputs. This dispersion would be a function not only of the sensitivity of the measuring device, but also of the interaction time (between measuring device and gravitational radiation) and of the arm length of the corresponding laser- interferometer. It would have a minimum limit, and the introduction of the current experimental parameters insinuates that the dispersion of the existing proposals could lie very far from this minimum, which means that they would show a very large dispersion.Comment: 19 pages, Latex (use epsfig.sty
    • …
    corecore