74 research outputs found

    Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury: A Data-Driven Approach

    Get PDF
    The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the "core" area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury

    Highly Sensitive Carbon Nanotube-Based Sensing for Lactate and Glucose Monitoring in Cell Culture

    Get PDF
    Monitoring of metabolic compounds in cell cultures can provide real-time information of cell line status. This is particularly important in those lines not fully known, as the case of embryonic and mesenchymal cells. On the other hand, such approach can pave the way to fully automated systems for growing cell cultures, when integrated in Petri dishes. To date, the main efforts emphasize the monitoring of few process variables, like pH, pO(2), electronic impedance, and temperature in bioreactors. Among different presented strategies to develop biosensors, carbon nanotubes exhibit great properties, particularly suitable for high-sensitive detection. In this work, nanostructured electrodes by using multiwalled carbon nanotubes are presented for the detection of lactate and glucose. Some results from simulations are illustrated in order to foresee the behavior of carbon nanotubes depending on their orientation, when they are randomly dispersed onto the electrode surface. A comparison between nonnanostructured and nanostructured electrodes is considered, showing that direct electron-transfer between the protein and the electrode is not possible without nanostructuration. Such developed biosensors are characterized in terms of sensitivity and detection limit, and are compared to previously published results. Lactate production is monitored in a cell culture by using the developed biosensor, and glucose detection is also performed to validate lactate behavior

    Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application?

    Get PDF
    Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule

    Gender effect on neurodegeneration and myelin markers in an animal model for multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) varies considerably in its incidence and progression in females and males. In spite of clinical evidence, relatively few studies have explored molecular mechanisms possibly involved in gender-related differences. The present study describes possible cellular- and molecular-involved markers which are differentially regulated in male and female rats and result in gender-dependent EAE evolution and progression. Attention was focused on markers of myelination (MBP and PDGF\u3b1R) and neuronal distress and/or damage (GABA synthesis enzymes, GAD65 and GAD67, NGF, BDNF and related receptors), in two CNS areas, i.e. spinal cord and cerebellum, which are respectively severely and mildly affected by inflammation and demyelination. Tissues were sampled during acute, relapse/remission and chronic phases and results were analysed by two-way ANOVA

    Rat forebrain neurogenesis and striatal neuron replacement after focal stroke

    Full text link
    The persistence of neurogenesis in the forebrain subventricular zone (SVZ) of adult mammals suggests that the mature brain maintains the potential for neuronal replacement after injury. We examined whether focal ischemic injury in adult rat would increase SVZ neurogenesis and direct migration and neuronal differentiation of endogenous precursors in damaged regions. Focal stroke was induced in adult rats by 90-minute right middle cerebral artery occlusion (tMCAO). Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (BrdU) labeling and immunostaining for cell type-specific markers. Brains examined 10–21 days after stroke showed markedly increased SVZ neurogenesis and chains of neuroblasts extending from the SVZ to the peri-infarct striatum. Many BrdU-labeled cells persisted in the striatum and cortex adjacent to infarcts, but at 35 days after tMCAO only BrdU-labeled cells in the neostriatum expressed neuronal markers. Newly generated cells in the injured neostriatum expressed markers of medium spiny neurons, which characterize most neostriatal neurons lost after tMCAO. These findings indicate that focal ischemic injury increases SVZ neurogenesis and directs neuroblast migration to sites of damage. Moreover, neuroblasts in the injured neostriatum appear to differentiate into a region-appropriate phenotype, which suggests that the mature brain is capable of replacing some neurons lost after ischemic injury.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34890/1/10393_ftp.pd

    El fil\uf3sofo autodidacto

    No full text
    • …
    corecore