28 research outputs found

    Li2_2100depl^{100\textrm{depl}}MoO4_4 Scintillating Bolometers for Rare-Event Search Experiments

    Full text link
    We report on the development of scintillating bolometers based on lithium molybdate crystals containing molybdenum depleted in the double-β\beta active isotope 100^{100}Mo (Li2_2100depl^{100\textrm{depl}}MoO4_4). We used two Li2_2100depl^{100\textrm{depl}}MoO4_4 cubic samples, 45 mm side and 0.28 kg each, produced following purification and crystallization protocols developed for double-β\beta search experiments with 100^{100}Mo-enriched Li2_2MoO4_4 crystals. Bolometric Ge detectors were utilized to register scintillation photons emitted by the Li2_2100depl^{100\textrm{depl}}MoO4_4 crystal scintillators. The measurements were performed in the CROSS cryogenic set-up at the Canfranc underground laboratory (Spain). We observed that the Li2_2100depl^{100\textrm{depl}}MoO4_4 scintillating bolometers are characterized by excellent spectrometric performance (\sim3--6 keV FWHM at 0.24--2.6 MeV γ\gamma's), moderate scintillation signal (\sim0.3--0.6 keV/MeV depending on light collection conditions) and high radiopurity (228^{228}Th and 226^{226}Ra activities are below a few μ\muBq/kg), comparable to the best reported results of low-temperature detectors based on Li2_2MoO4_4 with natural or 100^{100}Mo-enriched molybdenum content. Prospects of Li2_2100depl^{100\textrm{depl}}MoO4_4 bolometers for use in rare-event search experiments are briefly discussed.Comment: Prepared for submission to MDPI Sensors; 16 pages, 7 figures, and 3 table

    Twelve-crystal prototype of Li2_2MoO4_4 scintillating bolometers for CUPID and CROSS experiments

    Full text link
    An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, μ\muBq/kg, level of the LMO crystals radioactive contamination by 228^{228}Th and 226^{226}Ra.Comment: Prepared for submission to JINST; 23 pages, 9 figures, and 4 table

    A CUPID Li2100MoO4scintillating bolometer tested in the CROSS underground facility

    Get PDF
    A scintillating bolometer based on a large cubic Li2100MoO4 crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation 0¿2ß experiment CUPID . The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li2100MoO4 bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV ¿ line. The detection of scintillation light for each event triggered by the Li2100MoO4 bolometer allowed for a full separation (~8s) between ¿(ß) and a events above 2 MeV . The Li2100MoO4 crystal also shows a high internal radiopurity with 228Th and 226Ra activities of less than 3 and 8 µBq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li2100MoO4 scintillating bolometers for high-sensitivity searches for the 100Mo 0¿2ß decay in CROSS and CUPID projects

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027

    Prospects for neutrino astrophysics with Hyper-Kamiokande

    Get PDF
    Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics

    Enhanced light signal for the suppression of pile-up events in Mo-based bolometers for the 0 νββ\nu \beta \beta ν β β decay search.

    No full text
    Abstract Random coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of 100^{100} 100 Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li 2_2 2 MoO 4_4 4 crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to reduce this background. However, the scintillation provides a modest signal-to-noise ratio, making difficult a pile-up pulse-shape recognition and rejection at timescales shorter than a few ms. Neganov–Trofimov–Luke assisted light detectors (NTL-LDs) offer the possibility to effectively increase the signal-to-noise ratio, preserving a fast time-response, and enhance the capability of pile-up rejection via pulse shape analysis. In this article we present: (a) an experimental work performed with a Li 2_2 2 MoO 4_4 4 scintillating bolometer, studied in the framework of the CROSS experiment, and utilizing a NTL-LD; (b) a simulation method to reproduce, synthetically, randomly coincident two-neutrino double-beta decay events; (c) a new analysis method based on a pulse-shape discrimination algorithm capable of providing high pile-up rejection efficiencies. We finally show how the NTL-LDs offer a balanced solution between performance and complexity to reach background index \sim 10410^{-4} 10 - 4 counts/keV/kg/year with 280 g Li 2_2 2 MoO 4_4 4 ( 100^{100} 100 Mo enriched) bolometers at 3034 keV, the Q ββ_{\beta \beta } β β of the double-beta decay, and target the goal of a next generation experiment like CUPID

    Enhanced light signal as a powerful method to mitigate random coincidence background in double beta decay search with Mo-containing scintillating bolometers

    Get PDF
    International audienceRandom coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of 100^{100}Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li2_2MoO4_4 crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to reduce this background. However, the scintillation provides a modest signal-to-noise ratio, making difficult a pile-up pulse-shape recognition and rejection at timescales shorter than a few ms. Neganov-Trofimov-Luke assisted light detectors (NTL-LDs) offer the possibility to effectively increase the signal-to-noise ratio, preserving a fast time-response, and enhance the capability of pile-up rejection via pulse shape analysis. In this article we present: a) an experimental work performed with a Li2_2MoO4_4 scintillating bolometer, studied in the framework of the CROSS experiment, and utilizing a NTL-LD; b) a simulation method to reproduce, synthetically, randomly coincident two-neutrino double-beta decay events; c) a new analysis method based on a pulse-shape discrimination algorithm capable of providing high pile-up rejection efficiencies. We finally show how the NTL-LDs offer a balanced solution between performance and complexity to reach background index \sim10410^{-4} counts/keV/kg/year with 280~g Li2_2MoO4_4 (100^{100}Mo enriched) bolometers at 3034 keV, the Q-value of the double-beta decay, and target the goal of a next generation experiment like CUPID

    Twelve-crystal prototype of Li2MoO4 scintillating bolometers for CUPID and CROSS experiments

    Get PDF
    An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, μBq/kg, level of the LMO crystals radioactive contamination by 228Th and 226Ra

    Phonon-mediated crystal detectors with metallic film coating capable of rejecting α and β events induced by surface radioactivity

    Get PDF
    International audiencePhonon-mediated particle detectors based on single crystals and operated at millikelvin temperatures are used in rare-event experiments for neutrino physics and dark-matter searches. In general, these devices are not sensitive to the particle impact point, especially if the detection is mediated by thermal phonons. In this Letter, we demonstrate that excellent discrimination between interior and surface β and α events can be achieved by coating a crystal face with a thin metallic film, either continuous or in the form of a grid. The coating affects the phonon energy downconversion cascade that follows the particle interaction, leading to a modified signal shape for close-to-film events. An efficient identification of surface events was demonstrated with detectors based on a rectangular 20 × 20 × 10 mm3 Li2MoO4 crystal coated with a Pd normal-metal film (10 nm thick) and with Al–Pd superconductive bi-layers (100 nm-10 nm thick) on a 20 × 20 mm2 face. Discrimination capabilities were tested with 238U sources emitting both α and β particles. Surface events are identified for energy depositions down to millimeter-scale depths from the coated surface. With this technology, a substantial reduction of the background level can be achieved in experiments searching for neutrinoless double-beta decay
    corecore