18 research outputs found

    Altered Plasma and Brain Disposition and Pharmacodynamics of Methadone in Abstinent Rats

    Get PDF
    The pharmacokinetics and pharmacodynamics of methadone were investigated in control and abstinent rats. Minipumps filled with saline (control group) or saline-morphine (abstinent group) solutions were used to induce physical dependence. Solutions were delivered continuously by minipumps for 6 days. The physical dependence was evaluated 12 h after minipump removal by measuring specific withdrawal signs. Animals from the abstinent group showed clear withdrawal signs such as hostility on handling and weight loss. Plasma and brain disposition and pharmacodynamics of methadone were evaluated after a 0.35 mg/kg i.v. bolus dose administered 12 h after minipump removal. Plasma clearance, distribution clearance, and volume of distribution at steady-state were significantly decreased (P < 0.05) in the abstinent group. Plasma levels of alpha1-acid glycoprotein and plasma protein binding were significantly increased (P < 0.05) in the abstinent group. The estimates of pharmacokinetic parameters based on unbound plasma concentrations did not differ between groups, with the sole exception of the unbound apparent volume of distribution. The access of methadone to the brain was significantly faster (P < 0.05) in the abstinent group, although the extent of distribution in the brain was diminished in comparison with the control group. Analgesia recorded with tail-flick was used as the pharmacodynamic endpoint. Analgesic response and effect compartment concentrations of methadone were related by the sigmoidal Emax model. Estimates of C50 [steady-state plasma concentrations eliciting half of maximum effect (Emax)]] based on unbound concentrations did not differ between groups. On the other hand, the estimate of Emax had decreased by 65% in the abstinent group

    Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effects of main active metabolites of tramadol, (+)-O-desmethyltramadol and (-)-O-desmethyltramadol, in rats.

    Get PDF
    The pharmacokinetics and pharmacodynamics of the two main metabolites of tramadol, (+)-O-desmethyltramadol and (-)-O-desmethyltramadol, were studied in rats. Pharmacodynamic endpoints evaluated were respiratory depression, measured as the change in arterial blood pCO(2), pO(2), and pH levels; and antinociception, measured by the tail-flick technique. The administration of 10 mg/kg (+)-O-desmethyltramadol in a 10-min i.v. infusion significantly altered pCO(2), pO(2), and pH values in comparison with baseline and lower-dose groups (P <.05). However, 2 mg/kg administered in a 10-min i.v. infusion was enough to achieve 100% antinociception without respiratory depression. Moreover, the beta-funaltrexamine pretreatment completely eliminated the antinociception of the 2-mg/kg dose, suggesting that such an effect is due to mu-opioid receptor activation. To describe and adequately characterize the in vivo antinociceptive effect of the drug, (+)-O-desmethyltramadol was given at different infusion rates of varying lengths (10-300 min). Pharmacokinetics was best described by a two-compartmental model. The time course of response was described using an effect compartment associated with a linear pharmacodynamic model. The estimates of the slope of the effect versus concentration relationship were significantly decreased (P <. 05) as the length of infusion was increased, suggesting the development of tolerance. Doses of up to 8 mg/kg (-)-O-desmethyltramadol given in 10-min i.v. infusion did not elicit either antinociception in the tail-flick test or respiratory effects. These in vivo results are in accordance with the opiate and nonopiate properties reported for these compounds in several in vitro studies

    Modeling of the In Vivo Antinociceptive Interaction between an Opioid Agonist, (+)-O-Desmethyltramadol, and a Monoamine Reuptake Inhibitor, (—)-O-Desmethyltramadol, in Rats

    Get PDF
    The pharmacokinetic-pharmacodynamic (pk-pd) characterization of the in vivo antinociceptive interaction between (+)-O-desmethyltramadol [(+)-M1] and (-)-O-desmethyltramadol [(-)-M1], main metabolites of tramadol, was studied in three groups of rats. (+)-M1 and (-)-M1, both with different pd properties, were studied under steady-state and nonsteady-state conditions, depending on the group. Plasma drug concentration and antinociception were simultaneously measured in each animal by using an enantioselective analytical assay and the tail-flick test, respectively. Respiratory depression also was evaluated in another series of experiments according to the same experimental conditions. The pk behavior was similar for both enantiomers and no significant (P >.05) interaction between two compounds was found at this level. However, a significant (P .05) respiratory effects were seen during or after (+)-M1 and (-)-M1 administration

    Evolution of the use of corticosteroids for the treatment of hospitalised COVID-19 patients in Spain between March and November 2020: SEMI-COVID national registry

    Get PDF
    Objectives: Since the results of the RECOVERY trial, WHO recommendations about the use of corticosteroids (CTs) in COVID-19 have changed. The aim of the study is to analyse the evolutive use of CTs in Spain during the pandemic to assess the potential influence of new recommendations. Material and methods: A retrospective, descriptive, and observational study was conducted on adults hospitalised due to COVID-19 in Spain who were included in the SEMI-COVID- 19 Registry from March to November 2020. Results: CTs were used in 6053 (36.21%) of the included patients. The patients were older (mean (SD)) (69.6 (14.6) vs. 66.0 (16.8) years; p < 0.001), with hypertension (57.0% vs. 47.7%; p < 0.001), obesity (26.4% vs. 19.3%; p < 0.0001), and multimorbidity prevalence (20.6% vs. 16.1%; p < 0.001). These patients had higher values (mean (95% CI)) of C-reactive protein (CRP) (86 (32.7-160) vs. 49.3 (16-109) mg/dL; p < 0.001), ferritin (791 (393-1534) vs. 470 (236- 996) µg/dL; p < 0.001), D dimer (750 (430-1400) vs. 617 (345-1180) µg/dL; p < 0.001), and lower Sp02/Fi02 (266 (91.1) vs. 301 (101); p < 0.001). Since June 2020, there was an increment in the use of CTs (March vs. September; p < 0.001). Overall, 20% did not receive steroids, and 40% received less than 200 mg accumulated prednisone equivalent dose (APED). Severe patients are treated with higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%. Conclusions: Patients with greater comorbidity, severity, and inflammatory markers were those treated with CTs. In severe patients, there is a trend towards the use of higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effects of main active metabolites of tramadol, (+)-O-desmethyltramadol and (-)-O-desmethyltramadol, in rats.

    No full text
    The pharmacokinetics and pharmacodynamics of the two main metabolites of tramadol, (+)-O-desmethyltramadol and (-)-O-desmethyltramadol, were studied in rats. Pharmacodynamic endpoints evaluated were respiratory depression, measured as the change in arterial blood pCO(2), pO(2), and pH levels; and antinociception, measured by the tail-flick technique. The administration of 10 mg/kg (+)-O-desmethyltramadol in a 10-min i.v. infusion significantly altered pCO(2), pO(2), and pH values in comparison with baseline and lower-dose groups (P <.05). However, 2 mg/kg administered in a 10-min i.v. infusion was enough to achieve 100% antinociception without respiratory depression. Moreover, the beta-funaltrexamine pretreatment completely eliminated the antinociception of the 2-mg/kg dose, suggesting that such an effect is due to mu-opioid receptor activation. To describe and adequately characterize the in vivo antinociceptive effect of the drug, (+)-O-desmethyltramadol was given at different infusion rates of varying lengths (10-300 min). Pharmacokinetics was best described by a two-compartmental model. The time course of response was described using an effect compartment associated with a linear pharmacodynamic model. The estimates of the slope of the effect versus concentration relationship were significantly decreased (P <. 05) as the length of infusion was increased, suggesting the development of tolerance. Doses of up to 8 mg/kg (-)-O-desmethyltramadol given in 10-min i.v. infusion did not elicit either antinociception in the tail-flick test or respiratory effects. These in vivo results are in accordance with the opiate and nonopiate properties reported for these compounds in several in vitro studies

    Pharmacokinetic-Pharmacodynamic Modelling of the Antipyretic Effect of Two Oral Formulations of Ibuprofen

    No full text
    OBJECTIVE: To analyse the population pharmacokinetic-pharmacodynamic relationships of racemic ibuprofen administered in suspension or as effervescent granules with the aim of exploring the effect of formulation on the relevant pharmacodynamic parameters. DESIGN: The pharmacokinetic model was developed from a randomised, cross-over bioequivalence study of the 2 formulations in healthy adults. The pharmacodynamic model was developed from a randomised, multicentre, single dose efficacy and safety study of the 2 formulations in febrile children. PATIENTS AND PARTICIPANTS: Pharmacokinetics were studied in 18 healthy volunteers aged 18 to 45 years, and pharmacodynamics were studied in 103 febrile children aged between 4 and 16 years with bodyweight 225kg. METHODS: The pharmacokinetic study consisted of two 1-day study occasions, each separated by a 1-week washout period. On each occasion ibuprofen 400mg was administered orally as suspension or granules. The time course of the antipyretic effect was evaluated in febrile children receiving a single oral dose of 7 mg/kg in suspension or 200 or 400mg as effervescent granules. During the pharmacodynamic analysis, the predicted typical pharmacokinetic profile (based on the pharmacokinetic model previously developed) was used. RESULTS: The disposition of ibuprofen was described by a 2-compartment model. No statistical differences (p > 0.05) were found between the 2 formulations in the distribution and elimination parameters. Absorption of ibuprofen from suspension was adequately described by a first-order process; however, a model with 2 parallel first-order input sites was used for the drug given as effervescent granules, leading to time to reach maximum drug concentration (tmax) values of 0.9 and 1.9 hours for suspension and granules, respectively. The time course of the antipyretic effect was best described using an indirect response model. The estimates (with percentage coefficients of variation in parentheses) of Emax (maximum inhibition of the zero-order synthesis rate of the factor causing fever), EC50 (plasma concentration eliciting half of Emax), n (slope parameter) and k(out) (first order rate constant of degradation) were 0.055 (10), 6.16 (14) mg/L, 2.71 (18) and 1.17 (23) h(-1), respectively, where To is the estimate of the basal temperature, 38.8 (1) degrees C. No significant (p > 0.05) covariate effects (including pharmaceutical formulation) were detected in any of the pharmacodynamic parameters. CONCLUSIONS: Because of the indirect nature of the effect exerted by ibuprofen, the implications of differences found in the plasma drug concentration profiles between suspension and effervescent granules are less apparent in the therapeutic response

    Pharmacokinetic-Pharmacodynamic Modelling of the Antipyretic Effect of Two Oral Formulations of Ibuprofen

    Get PDF
    OBJECTIVE: To analyse the population pharmacokinetic-pharmacodynamic relationships of racemic ibuprofen administered in suspension or as effervescent granules with the aim of exploring the effect of formulation on the relevant pharmacodynamic parameters. DESIGN: The pharmacokinetic model was developed from a randomised, cross-over bioequivalence study of the 2 formulations in healthy adults. The pharmacodynamic model was developed from a randomised, multicentre, single dose efficacy and safety study of the 2 formulations in febrile children. PATIENTS AND PARTICIPANTS: Pharmacokinetics were studied in 18 healthy volunteers aged 18 to 45 years, and pharmacodynamics were studied in 103 febrile children aged between 4 and 16 years with bodyweight 225kg. METHODS: The pharmacokinetic study consisted of two 1-day study occasions, each separated by a 1-week washout period. On each occasion ibuprofen 400mg was administered orally as suspension or granules. The time course of the antipyretic effect was evaluated in febrile children receiving a single oral dose of 7 mg/kg in suspension or 200 or 400mg as effervescent granules. During the pharmacodynamic analysis, the predicted typical pharmacokinetic profile (based on the pharmacokinetic model previously developed) was used. RESULTS: The disposition of ibuprofen was described by a 2-compartment model. No statistical differences (p > 0.05) were found between the 2 formulations in the distribution and elimination parameters. Absorption of ibuprofen from suspension was adequately described by a first-order process; however, a model with 2 parallel first-order input sites was used for the drug given as effervescent granules, leading to time to reach maximum drug concentration (tmax) values of 0.9 and 1.9 hours for suspension and granules, respectively. The time course of the antipyretic effect was best described using an indirect response model. The estimates (with percentage coefficients of variation in parentheses) of Emax (maximum inhibition of the zero-order synthesis rate of the factor causing fever), EC50 (plasma concentration eliciting half of Emax), n (slope parameter) and k(out) (first order rate constant of degradation) were 0.055 (10), 6.16 (14) mg/L, 2.71 (18) and 1.17 (23) h(-1), respectively, where To is the estimate of the basal temperature, 38.8 (1) degrees C. No significant (p > 0.05) covariate effects (including pharmaceutical formulation) were detected in any of the pharmacodynamic parameters. CONCLUSIONS: Because of the indirect nature of the effect exerted by ibuprofen, the implications of differences found in the plasma drug concentration profiles between suspension and effervescent granules are less apparent in the therapeutic response

    Dense output for extrapolation methods

    No full text
    This paper is concerned with dense output formulas for extrapolation methods for ordinary differential equations. In particular, the extrapolated explicit Euler method, the GBS method (for non-stiff equations) and the extrapolated linearly implicit Euler method (for stiff and differential-algebraic equations) are considered. Existence and uniqueness questions for dense output formulas are discussed and an algorithmic description for their construction is given. Several numerical experiments illustrate the theoretical results
    corecore