15 research outputs found

    3-D printed meat alternatives based on pea and single cell proteins and hydrocolloids: effect of paste formulation on process-induced fibre alignment and structural and textural properties

    Get PDF
    Extrusion-based 3D food printing can be used as an alternative structuring technique to traditional extrusion processing for creating meat-like structures. This study focused on 3-D food printing to generate structures analogous to meat by using various combinations of texturized pea protein fibrils, microbial Single Cell Protein (SCP) and hydrocolloids locust bean gum and/or sodium alginate. Simple moulding was utilized as benchmarking to better understand the 3D printing-induced structural effects. To gain understanding of the interactions between proteins of different origin (plant and SCP) and with hydrocolloids, structural, textural and rheological properties were analysed. Oscillatory stress sweeps of all printing pastes revealed elastic-dominant rheological behaviour (G’ 4000-6000 Pa) with a defined yield stress (25-60 Pa) explaining their printability and shape stability. X-ray microtomography of ion-crosslinked analogues showed a printing-induced preferential alignment of fibrils in the direction of nozzle movement, while moulding led to a random orientation. Textural characterization via bi-directional cutting tests demonstrated higher cutting force in transversal (FT) over longitudinal (FL) direction in 3D-printed samples and equal forces in moulded samples. The anisotropy index (AI=FT/FL) of printed samples ranged between 1.4-2.5, indicating anisotropic texture, and 0.8-1 for moulded samples indicating isotropic texture. This study demonstrated the applicability of paste-extrusion in generating anisotropic structures analogous to meat by process-induced fibril alignment. The results support further development of 3D food printing technology in design of sustainable meat alternatives resembling whole-muscle meat

    Development and Consumer Perception of a Snack Machine Producing Customized Spoonable and Drinkable Products Enriched in Dietary Fiber and Protein

    Get PDF
    The aim of the study was to evaluate consumer perceptions toward customized snacks produced with a Healthy Snack Machine (HSM) prototype, at-site of the purchase and consumption. The present study had a multi-disciplinary approach including both snack product and HSM development (hardware and user interface). Snack development included both instrumental (viscosity, colloidal stability) and sensory characterization (by trained sensory (N = 10) and consumer (N = 55) panels) of spoonable and drinkable, oat- and dairy-based snack products, fortified with protein and/or dietary fiber. The protein and fiber addition reduced viscosity in spoonable products but did not affect the consistency of drinkable samples. Oat-based samples differed from dairy-based in multiple attributes in sensory profiling. In consumer sample testing, sample odor and taste were the most and least preferred aspects, respectively. In the snack machine testing, a qualitative consumer study (N = 33) showed that the HSM was easy to use, the user interface was clear, the ordering process was quick, and the participants were interested in using the HSM in the future. The snack choices (spoonable/drinkable and dairy/oat base) made by the consumers were distributed equally, but the berry-flavor was preferred over cocoa and vanilla. The most common HSM usage scenarios were “between work/school and hobbies” and “in transit from one place to another”

    Novel Functional Bakery Ingredients with Fermentation of Cereal Raw Materials

    No full text
    There is increasing demand for functional ‘clean label’ bakery ingredients for extending shelf life of baked products. The literature review introduces physical (staling) and microbiological spoilage of wheat bread and current methods of their control. In addition, wheat sourdough fermentation with an emphasis on antifungal (AF) and dextran-producing lactic acid bacteria (LAB) starters as a ‘clean label’ alternative to chemical preservatives and hydrocolloid additives is reviewed. The aims of this study were to 1) Isolate and select promising antifungal or dextran-producing LAB strains, 2) Optimise dextran production in a cereal ingredient medium (CIM), produce prototype bakery ingredients under optimised conditions and to study their effects on wheat bread quality, 3) Investigate in vitro AF activity of strains cultivated in a CIM. The effects of fermentation time (16 – 32 h), CIM (8-14% w/v) and sucrose content (4 – 14% w/v) on viscosity and dextran production by the best Weissella strain were modelled using response-surface methodology. Moreover, cell growth, acidification, and oligosaccharide (OS) production during fermentations were determined. Further, the effects of enzyme treatment and longer fermentation time (40 – 72 h) were studied. Crumb firming during storage (0 – 4 days), the specific volume and acidity of wheat bread supplemented with fermented CIMs (5 – 10% flour weight) were measured. The AF activities of Lactobacillus-fermented CIM against a Penicillium spp. indicator mould was measured by agar diffusion assay. Under the optimal conditions (32 h at 25°C; 10% w/v CIM; 14% w/v sucrose) the best Weissella strain increased viscosity of the CIM significantly and produced technologically significant amounts of dextran (3.5% w/v) with simultaneous OS formation. At 5% of flour weight, dextran-enriched CIM increased loaf specific volume by 5% and gave 14% softer bread loaves of mild acidity after 4 days of storage compared to control wheat bread (P < 0.05). At 10% of flour weight, dextran-enriched CIM reduced loaf volume and increased crumb hardness. AF activity by Lactobacillus strains was detected only when cultivated in deMan-Rogosa-Sharpe (MRS) media but not in the CIM. AF activity could be enhanced by supplementing CIM with the MRS media component sodium acetate. Hence, sodium acetate at low pH appeared to be the main contributor to the AF activity of Lactobacillus strains. The dextran-enriched CIM is a promising baking ingredient for increasing the physical shelf life of wheat bread

    Approved by: BEHAVIOR ISOLATION IN ENTERPRISE SYSTEMS

    No full text
    To my mother and father who made me what I am today. To my wife who stood by me every step of the way. To everyone who gave me a piece of advice along the way. Without all of you, I would not be here today. iii ACKNOWLEDGEMENTS This work was made possible by support and advice from many other individuals. In this section, I will try to acknowledge every one of them. Please forgive me if I forgot anyone, I am still grateful for your help. My advisor Karsten Schwan gets the lion’s share. With lots of support and advice and plenty of hand holding in the beginning that gradually transitioned to support and guidance as I matured as a researcher. It would be an understatement to say this work would not have been possible without his help and support. I am also grateful to my thesis committee, their valuable feedback on my thesis proposal helped formulate a solid plan of attack to build a strong dissertation and provided a wealth of feedback that was instrumental in the writeu
    corecore