203 research outputs found
The role of auxiliary states in state discrimination with linear optical evices
The role of auxiliary photons in the problem of identifying a state secretly
chosen from a given set of L-photon states is analyzed. It is shown that
auxiliary photons do not increase the ability to discriminate such states by
means of a global measurement using only optical linear elements, conditional
transformation and auxiliary photons.Comment: 5 pages. 1 figure. RevTex documen
Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity
We present a scheme for efficient state teleportation and entanglement
swapping using a single quantum-dot spin in an optical microcavity based on
giant circular birefringence. State teleportation or entanglement swapping is
heralded by the sequential detection of two photons, and is finished after the
spin measurement. The spin-cavity unit works as a complete Bell-state analyzer
with a built-in spin memory allowing loss-resistant repeater operation. This
device can work in both the weak coupling and the strong coupling regime, but
high efficiencies and high fidelities are only achievable when the side leakage
and cavity loss is low. We assess the feasibility of this device, and show it
can be implemented with current technology. We also propose a spin manipulation
method using single photons, which could be used to preserve the spin coherence
via spin echo techniques.Comment: The manuscript is extended, including BSA fidelity, efficiency, and a
compatible scheme for spin manipulations and spin echoes to prolong the spin
coherenc
Complete and Deterministic discrimination of polarization Bell state assisted by momentum entanglement
A complete and deterministic Bell state measurement was realized by a simple
linear optics experimental scheme which adopts 2-photon polarization-momentum
hyperentanglement. The scheme, which is based on the discrimination among the
single photon Bell states of the hyperentangled state, requires the adoption of
standard single photon detectors. The four polarization Bell states have been
measured with average fidelity by using the linear momentum
degree of freedom as the ancilla. The feasibility of the scheme has been
characterized as a function of the purity of momentum entanglement.Comment: 4 pages, v2, comments adde
Hyperentangled Bell-state analysis
It is known that it is impossible to unambiguously distinguish the four Bell
states encoded in pairs of photon polarizations using only linear optics.
However, hyperentanglement, the simultaneous entanglement in more than one
degree of freedom, has been shown to assist the complete Bell analysis of the
four Bell states (given a fixed state of the other degrees of freedom). Yet
introducing other degrees of freedom also enlarges the total number of
Bell-like states. We investigate the limits for unambiguously distinguishing
these Bell-like states. In particular, when the additional degree of freedom is
qubit-like, we find that the optimal one-shot discrimination schemes are to
group the 16 states into 7 distinguishable classes, and that an unambiguous
discrimination is possible with two identical copies.Comment: typos corrected, to appear in PRA, 5 pages, 2 figures, 2 table
Conditional beam splitting attack on quantum key distribution
We present a novel attack on quantum key distribution based on the idea of
adaptive absorption [calsam01]. The conditional beam splitting attack is shown
to be much more efficient than the conventional beam spitting attack, achieving
a performance similar to the, powerful but currently unfeasible, photon number
splitting attack. The implementation of the conditional beam splitting attack,
based solely on linear optical elements, is well within reach of current
technology.Comment: Submitted to Phys. Rev.
Quantum Change Point
Sudden changes are ubiquitous in nature. Identifying them is crucial for a number of applications in biology, medicine, and social sciences. Here we take the problem of detecting sudden changes to the quantum domain. We consider a source that emits quantum particles in a default state, until a point where a mutation occurs that causes the source to switch to another state. The problem is then to find out where the change occurred. We determine the maximum probability of correctly identifying the change point, allowing for collective measurements on the whole sequence of particles emitted by the source. Then, we devise online strategies where the particles are measured individually and an answer is provided as soon as a new particle is received. We show that these online strategies substantially underperform the optimal quantum measurement, indicating that quantum sudden changes, although happening locally, are better detected globally.published_or_final_versio
Growth of graph states in quantum networks
We propose a scheme to distribute graph states over quantum networks in the
presence of noise in the channels and in the operations. The protocol can be
implemented efficiently for large graph sates of arbitrary (complex) topology.
We benchmark our scheme with two protocols where each connected component is
prepared in a node belonging to the component and subsequently distributed via
quantum repeaters to the remaining connected nodes. We show that the fidelity
of the generated graphs can be written as the partition function of a classical
Ising-type Hamiltonian. We give exact expressions of the fidelity of the linear
cluster and results for its decay rate in random graphs with arbitrary
(uncorrelated) degree distributions.Comment: 16 pages, 7 figure
Multi-copy programmable discrimination of general qubit states
Quantum state discrimination is a fundamental primitive in quantum statistics
where one has to correctly identify the state of a system that is in one of two
possible known states. A programmable discrimination machine performs this task
when the pair of possible states is not a priori known, but instead the two
possible states are provided through two respective program ports. We study
optimal programmable discrimination machines for general qubit states when
several copies of states are available in the data or program ports. Two
scenarios are considered: one in which the purity of the possible states is a
priori known, and the fully universal one where the machine operates over
generic mixed states of unknown purity. We find analytical results for both,
the unambiguous and minimum error, discrimination strategies. This allows us to
calculate the asymptotic performance of programmable discrimination machines
when a large number of copies is provided, and to recover the standard state
discrimination and state comparison values as different limiting cases.Comment: Based on version published in Physical Review A, some errors in
appendix A corrected. 13 pages, 4 figure
- …