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Sudden changes are ubiquitous in nature. Identifying them is crucial for a number of applications in
biology, medicine, and social sciences. Here we take the problem of detecting sudden changes to the
quantum domain. We consider a source that emits quantum particles in a default state, until a point where a
mutation occurs that causes the source to switch to another state. The problem is then to find out where the
change occurred. We determine the maximum probability of correctly identifying the change point,
allowing for collective measurements on the whole sequence of particles emitted by the source. Then, we
devise online strategies where the particles are measured individually and an answer is provided as soon as
a new particle is received. We show that these online strategies substantially underperform the optimal
quantum measurement, indicating that quantum sudden changes, although happening locally, are better
detected globally.
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The detection of sudden changes in a sequence of
random variables is a pivotal topic in statistics, known
as the change point problem [1–3]. The problem has
widespread applications, including the study of stock
market variations [4], protein folding [5], and landscape
changes [6]. In general, identifying change points plays a
crucial role in all problems involving the analysis of
samples collected over time [2,7], because such analysis
requires the stability of the system parameters [8]. If
changes are correctly detected, the sample can be conven-
iently divided in subsamples, which can then be analyzed
by the standard statistical techniques. The detection of
change points can also be viewed as a border problem [9],
namely, a problem where one wants to draw a separation
between two (or more) different configurations—a task that
plays a central role in machine learning [10].
The simplest example of a change point problem is that

of a coin with variable bias. Imagine that a game of Heads
or Tails is played with a fair coin, but after a few rounds one
player suspects that the other has replaced the coin with a
biased one. After inspection of the coin, the suspicion is
confirmed: the coin has now a bias. Can we identify when
the coin was changed based only on the sequence of
outcomes? This classical problem has a natural extension to
the quantum realm, illustrated in Fig. 1: A source is
promised to prepare quantum particles in some default
state. At some point, however, the source undergoes a
mutation and starts to produce copies of a different state.
Given the sequence of particles emitted by the source, the
problem is to find out when the change took place. In the
basic version of the problem, the initial and final states are
known, as in the classical example of the coin. No prior

information is given about the location of the change:
a priori, every point of the sequence is equally likely to be
the change point. For simplicity, we assume the quantum
states to be pure. More elaborate variations can be
considered, e.g., with unknown states, nonuniform priors,
mixed states, and multiple change points. However, as we
will see in this Letter, the basic scenario already captures
the intriguing features that distinguish the quantum change
point problem from its classical version. An example where
the change can happen only at two possible positions
and the states are completely unknown was studied in
Ref. [11], where the problem was shown to be equivalent to
programmable discrimination [12].
The quantum change point problem can be formulated as

a problem of state discrimination. For a sequence of n
particles emitted by the source, the problem is to distin-
guish among n quantum states, the kth state having the
change point in the kth position. Notably, state discrimi-
nation problems with multiple quantum states have no

FIG. 1. The quantum change point problem. A quantum source
emits particles in a default state j0i, until the point where a
mutation occurs, causing the source to emit particles in a different
state jϕi. A detector receives the stream of particles emitted from
the source and measures them, producing an estimate of the point
where the mutation occurred.
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closed-form solution in general (see Ref. [13] for some
recent progress). A complete solution is known only for the
two-state case, a result that dates back to Helstrom’s
seminal work four decades ago [14]—and even in this
case computing the success probability may not be
straightforward, see, e.g., the derivation of the quantum
Chernoff bound [15]. For n ≥ 3, the only cases where a
solution is known are those of pure states with a high
degree of symmetry. This includes the symmetric states
[16], generated by the action of a unitary operation U
satisfying Un ¼ 1, and, more generally, states that are
generated by a group of unitaries [17,18].
Interestingly, the change point problem does not fall into

any of the above categories. In spite of this, we show that
the problem can be completely solved in the asymptotic
regime: in the limit of long sequences, the maximum
probability of success takes the elegant form

Pmax ¼
4ð1 − c2Þ

π2
K2ðc2Þ þO

�
1

n1−ϵ

�
; ð1Þ

where c is the overlap between the default state and the
alternate state, KðxÞ is the complete elliptic function of the
first kind [19], and ϵ > 0 is an arbitrary constant. Quite
remarkably, the limit probability has a nonzero value
despite the fact that the number of states to be distinguished
tends to infinity.
Equation (1) characterizes the ultimate quantum limit to

the detection of a change point. Achieving the limit requires
a nonlocal measurement, performed jointly on all the
particles in the sequence. To perform such measurement
one needs a quantum memory, wherein the states received
from the source can be stored as they arrive to the detector.
Since quantum memories are challenging to implement, it
is also interesting to consider local strategies, where the
particles are measured as soon as they arrive to the detector,
possibly adapting the measurement settings at one step
based on the outcomes of the previous measurements
steps. Local strategies are interesting also because they
can provide an online answer: they have a chance to
identify the change point as soon as it occurs, without
having to wait until all the n particles are scanned. When
the online strategies are compared with the optimal
quantum strategy, our results indicate the presence of a
gap, showing that the availability of a quantum memory
and the ability to perform nonlocal measurements offer an
advantage in the identification of the change point.
Let us derive the optimal quantum strategy. We denote

by j0i the default state and by jϕi ¼ cj0i þ sj1i the state
after the change. Without loss of generality, we choose c to
be real and positive. If the change occurs in the position k,
the state of the n particles is

jΨki ¼ j0i⊗k−1jϕi⊗n−kþ1: ð2Þ

We call the above states the source states. Note that the
source states are linearly independent, except in the trivial
case when the states jϕi and j0i are equal. In principle, the
change can occur in any position, meaning that every
source state has the same a priori probability 1=n [20]. The
detector is described by a positive operator-valued measure
(POVM), namely, a set of operators fMkgnk¼1 satisfying the
positivity condition Mk ≥ 0 and the completeness relationP

n
k¼1 Mk ¼ 1, where 1 denotes the identity in the space S

spanned by the source states. The average probability of
successfully identifying the change point is P ¼
ð1=nÞPn

k¼1hΨkjMkjΨki and our goal is to maximize it
over all possible POVMs.
As mentioned above, the source states do not fall into

any of the categories of states that admit a closed-form
solution to the detection problem. Still, we now show how
an optimal solution can be constructed in the large n limit.
The key to our argument is a general result about the
discrimination of linearly independent pure states, which is
of independent interest:
Theorem.—Let fjΨkignk¼1 be a set of linearly indepen-

dent states and let

Gij ¼ hΨijΨji ð3Þ

be the components of the corresponding Gram matrix. The
maximum probability of correctly identifying a state drawn
uniformly at random from the set fjΨkignk¼1 satisfies the
bounds

Pmax ≥
�
tr

ffiffiffiffi
G

p

n

�2

ð4Þ

and

Pmax ≤
�
tr

ffiffiffiffi
G

p

n

�2

þ
ffiffiffiffiffiffiffiffiffi
λmax

p
∥q − u∥1; ð5Þ

where λmax is themaximum eigenvalue ofG, q ¼ fqkg is the
probability distribution defined by qk ≔ ð ffiffiffiffi

G
p Þkk=tr½

ffiffiffiffi
G

p �,
u ¼ fukg is the uniform distribution (uk ¼ 1=n for all k),
and ∥q − u∥1 ≔

P
kjqk − ukj is the trace norm.

The proof of the Theorem is provided in the
Supplemental Material [21], where we further extend the
result to nonuniform prior distributions. Note that the two
bounds (4) and (5) are exactly equal when the diagonal
matrix elements of

ffiffiffiffi
G

p
are all equal to each other. In this

case, the Theorem yields the exact value of the success
probability, reproducing a recent result of Ref. [23].
We now evaluate the bounds (4) and (5) for the change

point problem, showing that the two bounds match at the
leading order. We start by evaluating the trace of

ffiffiffiffi
G

p
. First,

we observe that the Grammatrix has matrix elementsGij ¼
cji−jj and that its inverse has the simple form
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G−1 ¼ 1þ c2

1 − c2
1 −

c
1 − c2

H; ð6Þ

where Hij ¼ δijþ1 þ δjiþ1 þ cðδi1δj1 þ δinδjnÞ. Luckily,
the eigenvalues and eigenvectors of H can be constructed
explicitly: in the Supplemental Material we show that the
eigenvalues have the form 2 cos θl, where θl is a suitable
angle in the interval of size π=n centered around πl=n [21].
Equation (6) then implies that the eigenvalues of the Gram
matrix G are

λl ¼
1 − c2

1 − 2c cos θl þ c2
; ð7Þ

so that we have

tr
ffiffiffiffi
G

p

n
¼ 1

n

Xn
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

1 − 2c cos θl þ c2

s
: ð8Þ

Since the angles θl are distributed in intervals of equal size,
forming a partition of the interval ½0; πÞ, the sum can be
replaced by an integral in the large n limit, yielding the
asymptotic equality

tr
ffiffiffiffi
G

p

n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p

π

Z
π

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2c cos θ þ c2

p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p

π
Kðc2Þ; ð9Þ

valid up to an error of size 1=n1−ϵ [21]. According to
Eq. (4), the square of the right-hand side is a lower bound
for the maximum success probability.
Let us now evaluate the upper bound (5). First, note that

we have λmax ≤ ð1þ cÞ=ð1 − cÞ, as one can easily read out
from Eq. (7). Moreover, it is possible to show that the
probability distribution q is approximately uniform, with
the bound ∥q − u∥1 ≤ 4ð1þ cÞ=ð1 − cÞ1=n1−ϵ holding at
the leading order in n [21]. Hence, the upper bound (5)
yields the inequality

Pmax ≤ ðtr
ffiffiffiffi
G

p
=nÞ2 þ 4

�
1þ c
1 − c

�
3=2 1

n1−ϵ
: ð10Þ

In summary, the bounds (4) and (5) match in the asymptotic
limit, up to an error of size 1=n1−ϵ. This establishes the
validity of Eq. (1).
Asymptotically, the maximum success probability is

attained by the square root measurement [24,25]. Indeed,
it is possible to show [21] that the success probability of the
square root measurement, denoted by PSQ, satisfies the
bound

PSQ ≥ ðtr
ffiffiffiffi
G

p
=nÞ2; ð11Þ

and therefore is equal (at the leading order) to the maximum
success probability. We also performed a numerical analy-
sis, revealing that the square root measurement is an
extremely good approximation already for short sequences
(n ≳ 10), with a difference with respect to the optimal
success probability of less than 10−3. In Fig. 2 we compare
the asymptotic result in Eq. (1) with the results for n ¼ 50
corresponding to the square root measurement and to the
optimal measurement obtained via semidefinite program-
ming [26]. As is apparent from Fig. 2, the agreement is
strikingly good. The figure also includes the success
probability of various local measurement strategies that
will be discussed below. Notice that for c ¼ 0 the source
states are orthogonal and perfect identification is possible,
while in the limit c → 1 the source states become indis-
tinguishable and the success probability is given by random
guessing, Pmax ¼ 1=n → 0 for n → ∞. It is also patent
from the figure that Eq. (1) is a lower bound that becomes
tight as n goes to infinity, in agreement with the bounds (4)
and (5). A numerical fit reveals that the correction to the
leading order in Eq. (1) is of order 1=n, again, consistently
with our estimate.
Both the optimal measurement and the square root

measurement involve global operations on all the n
particles. This means that one has to scan the whole
sequence of particles before getting an estimate of the
change point. We now analyze the performance of online
strategies, where each particle is individually measured as
soon as it reaches the detector. The simplest such strategy
consists of measuring each particle in the computational
basis fj0i; j1ig. The measurements are performed sequen-
tially until the outcome 1 is obtained for the first time, say
at the rth step. At this point, we will know for sure that the
measured particle was in the state jϕi, meaning that the

FIG. 2. Probability of correct identification of the change point
as a function of c2 ¼ jh0jϕij2. The (blue) dashed line is the
asymptotic result in Eq. (1). For a sequence of n ¼ 50 states, we
also plot the maximum probability, obtained by SDP optimiza-
tion, (blue) solid dots, and the results corresponding to the square
root measurement, (black) crosses (which lie virtually on top of
the dots); the basic local strategy, (red) straight line; and the
greedy strategy, (orange) triangles.
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change must have occurred at some position k ≤ r.
Our best guess for the change point is then k̂ ¼ r, since
this is the most likely hypothesis given the observed data.
For the success probability one has the exact expression
PBL ¼ 1 − c2 þ c2=n, where BL stands for “basic local.”
This strategy is suboptimal for 0 < c < 1, and remains
suboptimal for n → ∞. The relative difference between the
two success probabilities can be up to 50% for suitable
values of the overlap c.
It is intriguing to explore whether more general online

strategies can increase the success probability. Let us con-
sider a scenario where a classical learning agent is asked to
guess when the change point occurs. The agent starts with a
uniform prior pðkÞ ¼ 1=n about the location of the change
point and updates her expectation as new data become
available. In order to update her information at the sth step,
the agent must perform a measurement, which generally
depends on the results, r1; r2;…; rs−1 obtained in the
previous steps. Here we focus on greedy strategies [27],
i.e., strategies that maximize the success probability at every
step [28]. For these strategies, we determine the optimal
measurement and the optimal guessing rule. The optimal
strategy works as follows: At step s, the agent has to perform
the Helstrom measurement [14] that distinguishes between
the states j0i and jϕi, given with (unnormalized) prior
probabilities [21]

pðsÞ
0 ≔ max

k
fpðkjr1;…; rs−1Þgnk¼sþ1

pðsÞ
ϕ ≔ max

k
fpðkjr1;…; rs−1Þgsk¼1: ð12Þ

Here,pðsÞ
0 (pðsÞ

ϕ ) is the probability of themost likely sequence
that has the particle at position s in the state j0i (jϕi).
The agent can deduce these probabilities from the posterior
probabilities, updated at step s. After the sth measurement
has been performed, the prior is updated in accordance with
the measurement result, using Bayes’ update rule: adopting

the shorthand notation ηðsÞk ≔ pðkjr1;…; rs−1Þ, we have

ηðsþ1Þ
k ¼ pðrsjkÞηðsÞkP

n
l¼1 pðrsjlÞηðsÞl

: ð13Þ

After the last measurement, the agent updates the prior to

ηðnþ1Þ
k and produces the guess k̂ that maximizes ηðnþ1Þ

k for the
change point.
For the greedy strategy, the full optimization over the

measurements has been carried out analytically. However, a
direct quantification of the average performance is intrac-
table, because the number of possible sequences of outcomes
grows exponentially with n. In order to compute the average
success probability we used a Monte Carlo simulation,
leading to the values plotted in Fig. 2 (orange triangles).
The figure shows a significant enhancement of performance

over the basic local strategy. Still, the optimal greedy strategy
does not attain the optimal quantum performance, as the gap
with the optimal collective strategy remains even for large
values of n. In short, this means that a learner with quantum
memory outperforms a (greedy) learner with classical
memory in the task of detecting change points.
Having observed a gap between the optimal greedy

strategy and the optimal quantum strategy, it is interesting
to check whether the gap can be closed by using arbitrary
local strategies, where each particle can be measured
multiple times and the measurement settings can depend
on the outcomes of all previous measurements. Note that
here the learner is allowed to use a quantum memory, but is
limited to perform individual measurements on the par-
ticles. Unfortunately, optimizing over arbitrary local strat-
egies is a daring task. Nevertheless, we can provide an
upper bound to the success probability by considering
POVM operators that are positive under partial trans-
position (PPT). In this case, a numerical optimization
proves the existence of a gap between the local strategies
and the optimal collective strategy for every value of n up
to n ¼ 7.
In this Letter we introduced the quantum change point

problem—a quantum version of the problem of identifying
changes in a sequence of random variables. In the quantum
change point problem, a source emits particles in a default
state until a pointwhere amutationoccurs, causing the source
to switch to a different state. For pure states, we determined
the maximum probability of correctly identifying the change
point, showing that, for large sequences of particles, the
optimal performance is attained by the square root meas-
urement. We also investigated online strategies, where each
particle ismeasured individually as soon as it is received from
the source. Among the online strategies, we identified the
optimal greedy strategy,which provides the best online guess
at each step. Our calculations show a gap between the greedy
strategy and the optimal quantum strategy based on a global
measurement. Further numerical optimization shows that the
gap remains open even for arbitrary local strategies, indicat-
ing that local operations cannot match the performance of
the optimal quantum protocol. In particular, this shows that a
machinewith quantummemory can outperform all machines
with classical memory.
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