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We present a novel attack on quantum key distribution based on the idea of adaptive absorption

[1]. The conditional beam splitting attack is shown to be much more efficient than the conventional
beam spitting attack, achieving a performance similar to the, powerful but currently unfeasible,
photon number splitting attack. The implementation of the conditional beam splitting attack,
based solely on linear optical elements, is well within reach of current technology.

I. INTRODUCTION

The use of quantum effects extends our communication
capabilities beyond the solutions offered by classical com-
munication theory. A prominent example is quantum key
distribution (qkd) which allows to expand a small initial
secret key shared between two parties into a larger secret
key. This task, which cannot be accomplished within
classical communication theory, enables the two parties
to exchange secret messages via the encryption technique
of the one-time pad [2]. The idea has been introduced by
Wiesner [3] and the first complete protocol for qkd has
been given by Bennett and Brassard [4].

In a quantum optical implementation, the sender (Al-
ice) encodes a random bit value “0” and “1” in the
orthogonal polarization states of a single photon. She
chooses at random either a linear or a circular polariza-
tion basis. The receiver (Bob) uses a polarization bases
chosen at random from these two bases. In the follow-
ing classical communication, Alice and Bob identify those
signals for which they used the same basis, and the cor-
responding bit values form the sifted key. Either due to
noise or due to eavesdropping, Alice’s and Bob’s version
of the sifted key differ. As long as the error rate is be-
low some threshold, they can correct these errors and
perform privacy amplification [5] to obtain a secure key.
The theoretical security analysis of this scheme has been
a subject of intense research and only recently a full proof
of security for the whole protocol has been given [6–9].

A first implementation of this protocol [10] demon-
strated the feasibility of this scheme. Since then, many
groups improved the implementations. State of the art
schemes can maintain the coherence of the system over
distances as far as 50 km. However, the signals used in
these implementations are not single photon signals. In-
stead, weak coherent pulses (wcp) are used with typical
average photon numbers of 0.1 or higher. The signals are
described by coherent states in the chosen polarization
mode. This modification of the signals together with the
large loss of the fiber optical implementations over long
distances opens a security loophole [11]. The restrictions
on practical implementations imposed by the use of wcp

signals has been demonstrated [12], giving a limit on the
distance over which qkd can be performed as a function
of Bob’s detection efficiency and dark count rate. Never-
theless, it has been shown that, despite these restrictions,
it is still possible to obtain a secure key [13,14]

The key process which makes Eve very powerful if Al-
ice and Bob use wcp signals is the photon number split-
ting attack (pns) [12,13]. In this attack Eve performs a
quantum non-demolition measurement (qnd) of the total
number of photons of the signal. Whenever she finds that
a signal contains two or more photons, she deterministi-
cally takes one photon out of the signal. The remaining
photons of the signal are then forwarded over a lossless
channel to Bob. For a wcp with mean photon number µ,
sent by Alice, Eve obtains a single photon in the same po-
larization state as those in the signal reaching Bob with
probability

psucc
pns

= 1 − e−µ − µe−µ. (1)

Eve now can delay the measurement on that photon until
she learns the polarization basis of each signal, thereby
learning the bit value for each signal. In order to ensure
that Bob does not get too many signals compared to the
installed lossy quantum channel, Eve can actually block
some signals completely, starting with the initial one-
photon signals which cannot be split. We find that this
strategy gives the complete key to Eve once the losses of
the installed quantum channel are so high that she can
block all single photon signals.

This splitting process used in the pns attack is allowed
by quantum mechanics, but the implementation is out of
reach of current technology. Therefore earlier analyses of
this situation made use of the beam splitting attack (bs)
which has the appeal of simplicity and feasibility. The
basic concept uses the idea that a lossy quantum channel
acts like a combination of a lossless channel and a beam
splitter which accounts for the losses. Eve monitors the
second output arm of the beam splitter and will gain the
complete knowledge of a bit of the sifted key (via a de-
layed measurement) if a multi-photon signal is split such
that Bob and Eve both get at least one photon of the
signal. The central quantities are the probability that
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Bob receives a non-vacuum signal

PB
bs

[¬0] = 1 − exp (−µη) (2)

where η is the single photon transmission efficiency of
the quantum channel. The probability that Bob and Eve
both receive a signal is

psucc
bs

= [1 − exp (−µη)] [1 − exp (−µ(1 − η))] . (3)

Despite its simplicity and perfect simulation of the lossy
channel, the beam splitter attack is very ineffective when
replacing channels with large losses, i.e. large transmis-
sion distances. In that case, for example, two photon sig-
nals are more likely to see both photons being directed to
Eve (and therefore becoming useless) rather than being
split.

In [1] the authors present the idea of adaptive absorp-
tion. This consists of sending a photonic signal through a
linear absorber in which absorption events can be contin-
uously monitored in such a way that as soon as a single
photon is absorbed, a feed-forward mechanism decouples
the signal from the absorbing medium. With this simple
procedure it is possible to extract precisely one photon
from a field-mode prepared in any state (other than the
vacuum, of course). In this paper we show how the idea of
adaptive absorption leads to the conditional beam split-
ting attack (cbs) on weak coherent pulse qkd. By using
only linear optical elements, the cbs reduces the number
of events where more than one photon is split off. This
allows an eavesdropping efficiency that overwhelms the
conventional beam splitting attack and can be as large
as the ones given by the pns.

The paper will be organized as follows. In Sec. II we
describe the cbs attack and introduce the quantum jump
method, which in turn will be used to calculate the state
of the signal during the various stages of the attack. The
results will allow us to compare the performances of the
cbs and the conventional bs attack. For sake of simplic-
ity this will be done in the scenario in which the eaves-
dropper is able delay her measurement until the encoding
basis is announced by Alice [15]. In Sec. III we consider
the more realistic situation in which Eve does not have
the technological skills to store photons, and introduce a
variation of the cbs where Eve tries to split two single
photons from the signal before forwarding it to Bob. In
Sec. IV we study the photon statistics in Bob’s detectors
and see that in principle Alice and Bob could use this
information to disclose Eve’s attack. The possibility of
improving the cbs attack by using mixed strategies will
be investigated in Sec. V. In Sec. VI we rederive some
basic results for finite beam splitters and compare them
with the ones obtained using the quantum jump method.
Sec. VII concludes the paper with a brief summary.

II. CONDITIONAL BEAM SPLITTING ATTACK

As mentioned in the introduction the hope is to take
advantage of the fact that the signal bits are implemented

through polarized coherent states with very low mean
photon number (instead of single photons). To do that
Eve will weakly couple her modes to the signal modes and
try to extract one excitation from the signal sent by Alice.
As soon as she gets one photon into her modes, Eve will
allow any remaining signal photons to reach Bob through
an ideal channel. Otherwise she will keep on trying for
a longer time. If she does not succeed after a maximum
coupling time τ , Eve will directly send the signal to Bob
through the ideal channel.

After Alice announces publicly the encoding basis used
to send each of the bits, Eve can measure her photon to
learn the bit value of transmitted signal [15]. Only in the
cases where the multiphoton signal is split in such a way
that both Eve and Bob receive a non-vacuum signal, will
the bit value learned by Eve form part of the sifted key
shared between Alice an Bob. We will therefore refer to
the probability of this event as the probability of success
of the cbs (psucc

cbs
). Since this attack does not produce

any qubit errors, we will take the probability of success
as a figure of merit for the attack. On the other hand, in
order to remain unnoticed, Eve’s attack has to be such
that the number of non-vacuum signals that arrive to
Bob agrees with what he expects from the lossy chan-
nel. Hence, the probability PB

cbs
[¬0] that Bob receives a

non-vacuum signal fixes a bound on the eavesdropping
attack. The probabilities psucc

cbs
and PB

cbs
[¬0] will be the

central quantities when evaluating the attack.

In Fig.1 a possible implementation of the cbs is shown.
The initial state sent by Alice occupies only two pho-
tonic modes (a and b) corresponding for example to the
two polarization degrees of freedom of a traveling mode.
Conditional beam splitting consists of sending the input
state to a polarization independent weak beam splitter.
A measurement to determine if there are any photons
is then done in the weakly coupled output arm (modes
ae and be). If no photon is detected the signal is sent
through an identical beam splitter again. Otherwise the
signal is transmitted through a perfect channel without
any further processing.

DI DII DN

Vacuum

ALICE BOB

FIG. 1. Possible experimental realization of the conditional
beam splitting attack.

To investigate this procedure we will take the limit of
infinitesimally weak beam splitting which will allow us to
take results from quantum jump methods [16–18] as we
did for the study of adaptive absorption [1]. In Sec. VI we
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will give some numerical results for finitely weak beam
splitters. Quantum jump methods are wave function (as
opposed to density matrix) approaches to study the evo-
lution of small systems coupled to a large reservoir. In
addition to being a very powerful method it has a nice
physical interpretation: The stochastic evolution of the
wave function corresponds to the stochastic read outs of
the continuously monitored reservoir.

We preface our analysis with a brief review of the quan-
tum jump approach to open systems. Suppose that ini-
tially the system is in the state |φ(0)〉. If no jump occurs
the evolution of the system is described by the effective
Hamiltonian, Heff = HS − i

2

∑

m J†
mJm,

∣

∣φ0(t)
〉

= e−iHeff t |φ(0)〉 . (4)

Here HS is the Hamiltonian of the isolated system and
the Jm’s are the jump operators which account for the
coupling to the reservoir. Since the effective Hamiltonian
is not hermitian, this state

∣

∣φ0(t)
〉

is not normalized. The
square of its norm gives the probability of having no jump
after a time t,

p0(t) = 〈φ(0)| eiH
†

eff
te−iHeff t |φ(0)〉 (5)

If a jump to a mode m occurs in a time between t and
t + δt then the system will be in the state

|φm(t + δt)〉 =
√

dtJm |φ(t)〉 (6)

immediately after this period. And again the probability
of this event is given by the square of the norm of the
conditional state,

δpm(t) = 〈φ(t)| J†
mJm |φ(t)〉 dt (7)

Using these probabilities one can follow the history of
the system’s wave function when the reservoir is contin-
uously monitored to detect what kind of jump occurred
or if any jump occurred at all. It can be shown that by
averaging over different histories the state of the system
at a given time t, one recovers the master equation

dρ

dt
= −i[HS, ρ] − 1

2

∑

m

(J†
mJmρ + ρJ†

mJm)

+
∑

m

JmρJ†
m (8)

for the system density operator ρ. The first term in this
equation describes the standard unitary evolution of the
system. The last two terms describe the relaxation pro-
cess due to the coupling of the system to the reservoir.
In order for this description to be true, the coupling and
the reservoir have to be such that the jump probability
δpm(t) is very small and does not depend on the previous
history of the system.

In this paper we use the quantum jump method to
study the evolution of the system formed by the signal

modes (a and b), and Eve’s modes (ae and be). The ac-
tion of the infinitesimally weak beam splitting together
with a measuring device that checks if the number of
photons in Eve’s modes has increased will play the role
of reservoir being continuously monitored. An increase
in the photon number in Eve’s modes is then represented
by the jump operator

J = ǫ(a†
ea + b†eb), (9)

where ǫ ≪ 1 is the reflection coefficient of the weak beam-
splitting. After this jump the photons in Eve’s modes and
the signal photons will be in a shared wave function. If
no jump occurs Eve’s modes will remain in the vacuum
state.

The initial state is given by

|φ(0)〉 = |α; β〉 |0; 0〉 , (10)

where the first two modes are the signal modes initially
in a coherent state and with a definite polarization, and
the last modes are Eve’s modes. The mean photon num-
ber of the signal sent by Alice is µ = |α|2 + |β|2. If Eve
does not intervene then the signal that Bob will receive
after going through the lossy channel is

∣

∣φB
η

〉

= |√ηα;
√

ηβ〉 |0; 0〉 , (11)

where η is the transmissivity of the channel. This means
that the probability that Bob gets a non-vacuum signal
is

PB
η [¬0] = 1 − PB

η [0] = 1 − exp(−µη), (12)

where PB
η [0] is the probability of Bob getting the vacuum

signal.
We now proceed to calculate what happens when Eve

tries to eavesdrop on the signal using the conditional
beam splitting attack (cbs). At time to = 0 Eve starts
a conditional beam splitting attack on the signal sent by
Alice. The conditional state of the system after a time t
when no photon has been detected in Eve’s modes is

∣

∣φ0(t)
〉

= e−t 1
2J†J |φ(0)〉

= e−
tǫ2

2 (na+nb) |α; β〉 |0; 0〉
= e

1
2 (γ2

t −1)µ |γtα; γtβ〉 |0; 0〉 , (13)

where we have defined γt = exp(− tǫ2

2 ) and used the nor-
mal ordered form of the exponential of the number opera-
tor [19]. The squared norm of this state is the probability
of detecting no photon in Eve’s mode after a time t,

p0(t) =
〈

φ0(t)
∣

∣φ0(t)
〉

= e(γ2
t −1)µ. (14)

If the first jump occurs in the time interval [t, t + dt]
then the conditional state of the system is
∣

∣φ1(t + dt)
〉

= Je−t 1
2J†J |φ(0)〉

= e
1
2 (γ2

t −1)µJ |γt1α; γtβ〉 |0; 0〉
= e

1
2 (γ2

t −1)µǫγt1 |γtα; γt1β〉 (α |1; 0〉 + β |0; 1〉). (15)
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The probability density of detecting a photon in Eve’s
modes at the time interval [t, t + δt] is therefore given by

p1(t) =
〈

φ1(t)
∣

∣φ1(t)
〉

= ǫ2γ2
t1

µe(γ2
t1

−1)µ. (16)

As already mentioned, the first thing that Alice and
Bob will check to detect the presence of Eve, is that Bob
receives a fraction of non-vacuum signals consistent with
the lossy channel, given in (12). That is,

PB
cbs

[¬0] = PB
η [¬0] or PB

cbs
[0] = PB

η [0]. (17)

The total probability that after the cbs attack Bob gets
a vacuum signal is

PB
cbs

[0] = p0(τ)|〈0; 0 |γτα; γτβ〉 |2 +

+

∫ τ

0

p1(t)|〈0; 0 |γtα; γtβ〉 |2dt

= e−µ(1 + µ(1 − γ2
τ )), (18)

where we have made use of Eqs. (14) and (16). With
the results of Eqs. (12) and (18) we find the required
value of the coupling time τ so that condition expressed
in Eq. (17) is fulfilled,

γ2
τ = e−ǫ2τ =

1

µ
(1 + µ − eµ(1−η)). (19)

Notice that γ2
τ < η.

In order to quantify the performance of the cbs we
will now calculate the probability of a successful split-
ting psucc

cbs
. This is the probability that Eve manages to

extract one photon from the signal and still leaves at
least one photon for Bob. Splittings that leave the trans-
mitted signal in the vacuum state are not useful to Eve
since these bits will not contribute to the sifted key. The
success probability for the cbs attack is given by

psucc
cbs

= 1 − (PB
cbs

[0] + PE
cbs

[0] − PEB[0, 0]) (20)

= 1 − e−µ(1 + µ(1 − γ2
τ )) − e(γ2

τ−1)µ + e−µ

= 1 − µe−µ(1 − γ2
τ ) − e−(1−γ2

τ )µ, (21)

where PE
cbs

[0] = p0(τ) is the probability of having no pho-
ton in Eve’s modes (i.e. no jump) after the attack and
PEB[0, 0] = e−µ is the probability that there are photons
neither in Eve nor in Bob’s modes.

By inverting Eq. (19) we find the transmissivity η
‘mimicked’ (in the sense of Eq. (17)) by the cbs attack,

ηcbs = 1 − 1

µ
ln(1 + µ(1 − γ2

τ )). (22)

Since ηcbs is an increasing function of γ2
τ and we know

that this achieves its minimum for τ → ∞ (γ2
τ → 0), we

find that, given a mean photon number µ, the attack just
described cannot mimic arbitrarily large channel losses.
The minimum transmissivity is then given by

ηmin
cbs

= 1 − 1

µ
ln(1 + µ) ≈ 1

2
µ − 1

3
µ2 + O(µ3). (23)

This makes sense since for τ → ∞ all non-vacuum signals
will leak one photon to Eve while the remaining photons
always reach Bob. It is clear, therefore, that the removal
of only one photon cannot account for arbitrarily high
channel losses. In order to meet Bob’s expectations even
when η ≤ ηmin

cbs
, Eve can apply the protocol correspond-

ing to ηmin
cbs

and then block the outgoing signals with a
probability

pblock
cbs

=
1 − eµη

1 − eµηmin
cbs

. (24)

Note that if the channel loss is equal to or larger than
1 − ηmin

cbs
, then the probability of success is equal to the

probability of having more than one photon in a signal
pulse

psucc
cbs

(ηmin
cbs

) = 1 − eµ − µeµ. (25)

This means that for these high channel losses (i.e. η ≤
ηmin
cbs

) Eve can extract one excitation from the signal with-
out modifying Bob’s expected number of non-vacuum
signals. All Bob’s non-vacuum contributions effectively
come from the multiphoton part of the signal pulses, and
Eve will possess one photon from each of those signals.
Therefore she will obtain the full sifted key shared by Al-
ice and Bob after the public announcement of the bases.
This could never have happen if Eve had chosen the bs at-
tack. This is a very important feature since Eve’s knowl-
edge of the full key does not leave any room for Alice and
Bob to perform privacy amplification to obtain a secure
key.

Taking into account the blocking, in the regime of high
losses, the success probability calculated in (21) takes the
following form

psucc
cbs

=











1 − µe−µ(1 − γ2
τ ) − e−(1−γ2

τ )µ : η > ηmin
cbs

pblock
cbs

lim
γτ→0

psucc
cbs

= 1 − e−µη : η ≤ ηmin
cbs

. (26)

In order to evaluate the performance of an attack it is
more convenient to normalize the probability of success
with the probability that Bob gets a non-vacuum signal
(potential sifted key bit) to obtain the key fraction known
by Eve,

fcbs =
psucc
cbs

1 − PB
cbs

[0]
. (27)

As discussed previously, for η ≤ ηmin
cbs

Eve can acquire the
whole key, so in this regime fcbs = 1. For other channel
loss values the key fraction never reaches unity. Simi-
larly one can define the same quantity for the bs attack
obtaining

fbs =
psucc
bs

1 − PB
bs

[0]
= 1 − e−(1−η)µ, (28)
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where we have made use of Eq. (2) and (3). It is easy
to prove that the fraction of key known by Eve is always
bigger for the cbs than for the bs attack. In Fig. 2 we
can see these fractions as a function of the channel trans-
missivity for a typical value of the mean photon number
used in current experiments (see also Fig. 8).

0.2 0.4 0.6 0.8 1
η

0.2

0.4

0.6

0.8

1

Key Fraction µ=0.1

FIG. 2. Fraction of the key known by Eve in cbs (solid
curve), bs (dotted) and pns (dashed) attacks for µ = 0.1

In order to compare quantitatively the cbs with the bs

we define the performance quotient qcbs = fcbs

fbs

which is

plotted in Fig. 3 as a function of the mean photon number
of the signal pulses and the channel transmissivity.

0.5
1

1.5

2

µ
0.2

0.4

0.6

0.8

η
0
1
2
3
4
5

qCBS

0.5
1

1.5

2

µ

FIG. 3. Performance quotient qcbs for the cbs. Since it is
not bounded from above we have only plotted values smaller
than five.

We see that for small µ the cbs can be substantially
better than the bs. For example, for the experimentally
reasonable values µ = 0.1 and η = 0.1 the cbs provides
Eve with a fraction of the key qcbs = 5.4 times bigger
than the bs attack. For a fixed mean photon number µ,
the optimum advantage qmax

cbs
= 1+µ−1 is achieved when

the channel losses are η = ηmin
cbs

.

III. CBS WITHOUT STORAGE

There is an important fact that makes the cbs, as de-
scribed above, rather more technically demanding than
the bs. In order to follow the cbs protocol described in
the previous section Eve has to be able to perform two
experimentally non-trivial tasks [20]. a) Firstly she has
to detect the presence of photons in her modes ae and
be without altering their polarization. This is necessary
because Eve has to be able to carry out the conditional
dynamics, i.e. stop the splitting as soon as she gets the
desired photon. This operation is not as technologically
demanding as the pns since it only needs to discriminate
the non-vacuum states from the vacuum. However, it is
out of reach of the immediately available technology. b)
The second task Eve must be able to realize is to store
the extracted photon until the encoding basis is publicly
announced by Alice.

In the conventional beam splitting attack Eve is not
required to carry out task a). On the other hand, we
notice that Alice can always delay the public announce-
ment, making it harder for Eve to store coherently the
signal and thereby, effectively constraining Eve to attacks
that do not rely on the storage of the extracted signal.
This of course applies to all the error-free attacks that
we have seen in this paper, that is the pns, bs and cbs.
Inasmuch as Eve is forced to carry out the signal mea-
surement before knowing the encoding basis, in the cbs

attack she does not have to rely anymore on her ability
to detect photons without disturbing their polarization
(task a)). Eve can realize the conditional dynamics by
directly measuring the extracted photons with photode-
tectors. Acknowledging the impracticability of indefinite
qubit storing, thus, puts on equal footing the bs and cbs

as far as technological difficulty is concerned, and still
leaves the pns as unfeasible.

As in the previous section, we can now calculate the
performance of the cbs in this new no-storage or direct
measurement scenario. In this situation the cbs is bound
to fail in half of the cases. Eve only succeeds when she
measures the extracted photon in the right basis. The
probability of success and key fraction in the directly
measured conditional beam splitting (dcbs) will accor-
dantly be reduced by a factor 1

2 , i.e. psucc
dcbs

= 1
2psucc

cbs
and

fdcbs = 1
2fcbs. Clearly, since the number of extracted

photons is the same as in the scenario with the possi-
bility of storage, the number of non-vacuum signal that
arrive at Bob’s site remains the same.

The success probability for the directly measured beam
splitting attack (dbs) can be calculated taking into ac-
count that Eve’s attack is unsuccessful only in the case
where all split photons from a signal are measured [21]
in the wrong basis,

psucc
dbs

= (1 − e−ηµ)

(

1 −
∞
∑

n=0

1

2n

µn(1 − η)n

n!
e−µ(1−η)

)

= (1 − e−ηµ)(1 − e−
µ

2 (1−η)). (29)
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The fraction of the key known by Eve in this attack is
therefore,

fdbs = 1 − e−
µ
2 (1−η). (30)

Since for small µ the most important contribution in
the bs comes from the two photon signals, as in cbs, the
success probability of both attacks is reduced approxi-
mately by the same factor 1

2 . But this factor is always a
bit larger for dbs since in the cases where more than one
photon per signal are split, Eve has a bigger chance to
measure in the right basis. The performance quotient is
now defined relatively to the dbs, qdcbs = fdcbs

fdbs

and it is

plotted in Fig. 4 for relevant values of µ and η. We see
that for large mean photon numbers (µ > ln 4 ≈ 1.4) the
dbs can actually perform slightly better than the dcbs

for some range of channel losses (see also Figs. 8 and 7).
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FIG. 4. Performance quotient qdcbs for the dcbs . Since it
is not bounded from above we have only plotted values smaller
than five.

Despite this last remark it looks like the cbs maintains
its efficiency over the bs under the no-storage constraint
(compare Fig. 4 with Fig. 3), but in fact under this sce-
nario the dcbs has lost the threatening feature of being
able to extract the full key (fcbs = 1) for high channel
losses (see Fig. 8).

In the remaining of this section we will propose a vari-
ation of the cbs which allows Eve to extract the full key
even in the no-storage scenario, and to perform better
than dbs for any mean photon number. The idea of the
adapted conditional beam splitting attack (acbs) is to
extract two photons, one by one, from the signal and
measure each of them in a different polarization basis.
In order to do that, Eve just has to follow the same pro-
tocol as in the single photon cbs but instead of stopping
the beam splitting as soon as she detects one photon,
she has to continue the splitting until a second photon
is extracted. As previously, in order to match the ex-
pected number of photons in Bob’s side, the splitting

procedure can run for a maximum coupling time τ̃ af-
ter which the signal must be transmitted to Bob through
a lossless channel. Obviously, this attack will only be
advantegeous in the no-storage scenario since otherwise,
when the key can be extracted from the first photon, it
is of no use to extract a second photon.

The total probability that Bob gets a vacuum signal
after the acbs is

PB
acbs

[0] = p0(τ̃ )p0
c(µ) +

∫ τ̃

0

p1(t1)

[

∫ τ̃

t1

p11(t2|t1)p0
c(γ

2
t2

µ)dt2 + p10(τ̃ |t1)p0
c(γ

2
τ̃µ)

]

dt1

= e−µ(1 + µ(1 − γ2
τ̃ ) +

µ2

2
(1 − γ2

τ̃ )2), (31)

where pn
c (µ) is the probability of having n photons in a

coherent state with mean photon number µ, p11(t2|t1) =

ǫ2γ2
t2

µeµ(γ2
t2

−γ2
t1

) is the probability of having a jump at
t2 conditional to a previous jump at t1, and p10(τ̃ |t1) =

eµ(γ2
τ−γ2

t1
) is the probability of having no jump in the time

interval [t1, τ̃ ] conditional to a jump at t1. These prob-
abilities can be calculated following the general results
in the beginning of Sec. II. The previous result is equal
to the corresponding probability in cbs (Eq.18) plus a
second order in µ term which represents the removal of
two photons.

The coupling time τ̃ can be now fixed so that Bob’s
probability of detecting at least one photon agrees with
the result he would expect from the lossy channel,

PB
acbs

[¬0] = PB
η [¬0] −→ PB

acbs
[0] = PB

η [0] (32)

−→ γ2
τ̃ = e−ǫ2τ̃ = 1 +

1

µ
(1 −

√

2eµ(1−η) − 1). (33)

As expected we see that the maximum coupling time will
be smaller for the acbs than the cbs γ2

τ < γ2
τ̃ < η.

To calculate the probability of success we have to count
the events in which Eve extracts a signal while leaving
some non-vacuum contribution to Bob. We also have to
take into account that Eve only gets the bit value with
certainty when she manages to extract two single pho-
tons, otherwise she will only get it in half of the cases.
The success probability for the acbs attack is then given
by

psucc
acbs

=

∫ τ̃

0

p1(t1)

[

∫ τ̃

t1

p11(t2|t1)p¬0
c (γ2

t2
µ)dt2+

+
1

2
p10(τ̃ |t1)p¬0

c (γ2
τ̃µ)

]

dt1 = 1 − e−µ
[

eγ2
τ̃ µ+

+
µ

2
(1 − γ2

τ̃ )(1 + eγ2
τ̃ µ) +

µ2

2
(1 − γ2

τ̃ )2
]

, (34)

where p¬0
c (µ) is the probability of having at least one

photon in a coherent state with mean photon number µ.
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By inverting Eq. (33) we find that the transmissivity
‘mimicked’ (in the sense of Eq. (32)) by the acbs attack
is

ηacbs = 1 − ln(1 + µ(1 − γ2
τ̃ ) +

µ2

2
(1 − γ2

τ̃ )2). (35)

Since this is an increasing function of γ2
τ̃ we find the min-

imum transmissivity that can be mimicked by the acbs

without extra blocking (for τ̃ → ∞) is

ηmin
acbs

= 1 − 1

µ
ln(1 + µ +

µ2

2
) ≈ 1

2
µ2 + O(µ3). (36)

In this limit of very high losses Eve can extract two
excitations from all signals and still meet Bob’s expecta-
tions. Therefore, by measuring each photon in a different
basis, she will be able to acquire the full key even in the

no-storage scenario ( facbs =
psucc

acbs

PB
acbs

[¬0]
= 1). If the losses

are still higher (η ≤ ηmin
acbs

) Eve has to block some signals
with probability

pblock
acbs

=
1 − e−µη

1 − e−µηmin
acbs

. (37)

The performance quotient is now qacbs = facbs

fdbs

. In

Fig. 5 we can see the values of this ratio as a function
of the tranmissivity of the channel and the mean pho-
ton number. Notice that in this case the performance
quotient is larger than unity for all values of the mean
photon number, which means that the acbs is more effi-
cient than dbs. On the other hand, for low mean photon
numbers (µ < 1), higher losses are required to achieve
the same performance as the dcbs (see also Figs. 7 and
8).
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FIG. 5. Performance quotient qacbs for the acbs.

We see that the acbs can still be substantially better that
the dbs. For the values µ = 0.1 and η = 0.1 the acbs

attack provides Eve with a fraction of the key qacbs = 1.3

times bigger than the dbs attack. In Fig. 6 we can see the
behavior of the performance quotient as a function of the
mean photon number for a fixed value of the losses. We
observe that, contrary to the other attacks, for a fixed
transmissivity of the channel η, the efficiency of acbs

over dbs can increase with µ. For example, if the mean
photon number of the previous example is increased to
µ = 1.1 keeping the transmissivity in η = 0.1 the effi-
ciency factor grows to qacbs = 2.48.

0.5 1 1.5 2
µ

1

2

3

4

5

6
q η=0.1

FIG. 6. Performance quotient at a fixed transmissivity
η = 0.1 for the acbs (solid), dcbs (dotted) and cbs (dashed).

In Fig. 7 we represent which of the studied attacks is
most effective in the no-storage scenario for different val-
ues of the parameters µ and η. As a summary, in Fig. 8
we show the key fraction as a function of the losses for
four different values of the mean photon and for the dif-
ferent attacks studied in this paper. For comparison, the
results for the pns in the storage and no-storage scenar-
ios are also plotted. Once again, we notice that the cbs

and acbs provide real alternatives to the, at present, un-
feasible pns and the ineffective bs.

0 0.5 1 1.5 2 2.5 3
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FIG. 7. Diagram of dominance of the different attacks
under no-storing conditions: 1.fdcbs ≥ facbs ≥ fdbs,
2.facbs ≥ fdcbs ≥ fdbs and 3.facbs ≥ fdbs ≥ fdcbs
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FIG. 8. Key fraction for different scenarios (Black: no-storage allowed, Gray: storage allowed) and attacks (Solid: cbs,
Dashed: acbs, Dotted: bs, Dot-dash: pns).

IV. PHOTON STATISTICS

The task of an eavesdropper is to acquire knowledge
about the secret key that Alice and Bob want to share.
But the important point is that she does this without
leaving any trace in the signal that could indicate her
presence to Alice and Bob. Eve’s eavesdropping capabil-
ities are therefore strongly dependent on the capabilities
of Alice and Bob to prepare and analyze their signals.
In this work we have assumed that Alice is not able to
prepare single photon signals, using instead very weak
coherent states. Moreover, we have assumed that Bob’s
capabilities are limited as well by a detection setup that
gives the same outcome for single photons than for multi-
photon signals. In this situation Eve has only to forward
signals to Bob in such a way that expected number of
non-vacuum signals is the same as for the lossy channel,
as expressed in Eq.(17).

In this section we will study what happens in the sit-
uations where Bob’s capabilities are not so poor. In par-
ticular we consider the realistic situation in which Bob’s
analyzer is a polarizing beam splitter (in two possible ori-
entations according to the basis measured) with a photon
detector in each of its arms. We will assume that these
detectors do not have photon number resolution, so that
they only have two possible outcomes corresponding to
non-vacuum (‘click’) and vacuum (no ‘click’) impinging
signals.

When Bob and Alice bases coincide, only one of Bob’s
detectors can click and Eve remains safe. But in the case
that Bob measures in a different basis than the encod-
ing basis, the multiphoton part of the signal can lead
to simultaneous clicks in both detectors. Here is where
Eve can reveal her presence depending on what attack
she chooses. Bob is expecting to receive a weak coherent
state of a given amplitude (determined by the amplitude
of the selected coherent state and by the channel losses)
and therefore an expected number of these double clicks.
The probability of these double clicks without Eve’s in-
tervention (or under the bs attack) is given by

pdc
bs

=
1

2
(1 − e−

µη

2 )2, (38)

where the factor 1
2 accounts for the probability that Alice

and Bob use different basis.
When Eve tries to eavesdrop using the cbs attack with-

out extra blocking (i.e η > ηmin
cbs

) the probability of double
counts is,

pdc
cbs

=
1

2
p0(τ)(1 − e−

γτ µ

2 )2 +
1

2

∫ τ

0

p1(t)(1 − e−
γtµ

2 )2dt

=
1

2
− e−µ

2
(4e

µ

2 − 1 − µ(1 − γ2
τ ) − 2e−

γ2
τ µ

2 ). (39)

By using (19) to express γτ in terms of the the channel
losses, and taking into account the blocking probability
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pblock
dcbs

(24) for η < ηmin
cbs

we plot in Fig. 9 the ratio of both

probabilities qdc
cbs

=
pdc

cbs

pdc
bs

as a function of the mean photon

number and channel transmissivity.
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FIG. 9. Ratio of the cbs and bs double-click probabilities.

We see that the cbs increases the probability of double-
clicks relative to the lossy channel. The reason for this
increase is that the cbs only takes one photon out while
several signal photons might be lost in the lossy chan-
nel. For increasing transmissivities the differences tend
to vanish. So, for example µ = {0.1, 0.01} and η = 0.3
lead to qdc = {1.1, 1.02}. But for higher losses the ratio
can be quite high, e.g for µ = {0.1, 0.01} and η = 0.1
qdc = {3.45, 1.2}. Inclusion of the effect of dark counts
in Bob’s detectors in pdc

cbs
shows only a slight reduction

of the discrepancies for reasonable dark count probabil-
ities (pD ∼ 10−5). Even though this is a definite hand-
icap of the cbs it might be of relative importance in
practice. The probability of double counts is very small
(pdc ∼ 1

8 (ηµ)2) while the statistical fluctuations are large,
therefore the number of transmitted signals needed to
appreciate Eve’s intervention might be exorbitant. As
shown in Fig. 11, for some parameter regimes one can
find a good compromise between the probability of suc-
cess and the double-count rate.

Moreover, as we shall see next, the disparity in the
number of double-clicks can be further decreased if Eve
uses the two-photon splitting adopted for the non-storage
conditions (acbs). The double-click probability in this
case is

pdc
acbs

= 1 − e−µ

(

8e
µ

2 − 1 − µ(1 − γ2
τ ) − 1

2
µ2(1 − γ2

τ )2+

−2e−
γ2

τ µ

2 (3 + µ(1 − γ2
τ ))

)

. (40)

In Fig. 10 we can see the ratio between this probabil-
ity and the corresponding probability for the lossy chan-

nel qdc
acbs

=
pdc

acbs

pdc
bs

, taking into account the blocking for

η < ηmin
acbs

. In Fig. 11 the same quantity is compared to
the performance quotient.
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FIG. 10. Ratio of the acbs and bs double-click probabili-
ties.
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FIG. 11. Double-click ratio (solid) and performance quo-
tient (Dashed) at a fix µ = 0.1 for cbs and dcbs (top) and
acbs(bottom)

We see that for the acbs attack the double click probabil-
ity takes nearly the same values as for the lossy channel
(µ = 0.1 and η = 0.1 give qdc = 1.05) while still providing
larger key fractions than the bs attack.

V. MIXED STRATEGIES

In the previous sections Eve’s attacks were character-
ized by only one parameter γτ . Once the type of attack

9



was chosen (cbs, acbs) she could only vary the coupling
time τ to tune her attack. In this section we will study
the situation in which Eve can use mixed strategies, i.e.
for each signal she can choose a different coupling time.
In this way, Eve has the freedom to choose a probabil-
ity distribution {pi} according to which she will apply
a coupling time τi (i.e. γτi

). A mixed strategy could
in principle lead to a lowering of the double-click proba-
bility without sacrificing to much probability of success.
Unfortunately we will see that this is not the case for the
cbs and acbs.

We start by considering the cbs attack. In this case
the number of non-vacuum signals received by Bob (18)
is linearly dependent on γ2

τi
, therefore the mixed strategy

has to be such that the average value of γ2
τi

is equal to
the pure strategy value fixed in Eq. (19), i.e.

P̄B
cbs

[0] =
∑

i

piP
B
cbs

[0]i

=
∑

i

pie
−µ(1 + µ(1 − γ2

τi
)) = PB

cbs
[0] (41)

−→
∑

i

piγ
2
τi

= γ2
τ . (42)

Now we want to know what is the behavior of the
probability of success and of the double-clicks when using
mixed strategies. From Jensen’s inequality [22] we know
that

f ′′(x)
≥
< 0 ⇐⇒

∑

i

pif(xi)
≥
< f(

∑

i

pixi). (43)

Since Eq. (42) assures that Bob gets the expected num-
ber of clicks we find, by using Eq. (21), that the mixed
strategy always leads to a smaller probability of success
than a pure one

p̄succ
cbs

=
∑

i

pip
succ
cbs

(γ2
τi

) and
d2psucc

cbs

d(γ2
τ )2

< 0

⇐⇒ p̄succ
cbs

< psucc
cbs

(γ2
τ ). (44)

Similarly one can easily see that the probability of
double-clicks in the cbs pdc

cbs
(39) increases when mixing

strategies. Since we already saw that the double-click
probability is higher than for the lossy channel we arrive
to the conclusion that using mixed strategies does not
offer any advantages to the cbs attack.

The same happens in the two-photon conditional beam
splitting (acbs). To prove this, one has to write the
probability of success and of double-clicks as a function
of Bob’s probability of receiving a non-vacuum signal,
and check for its concavity/covexity.

VI. CBS WITH FINITE BEAM SPLITTERS

In this section we will see how to implement the cbs

attack with finite reflectivity beam splitters. The beam

splitters have now a finite reflectivity |r|2 (and transmis-
sivity |t|2 = 1 − |r|2). Without any loss of generality we
will assume that r and t for the signal are real. We also
assume that they are independent of polarization.

The initial state can be written as |φ0〉 = |α; β〉 |0; 0〉
where the first ket is Alice’s coherent state and the sec-
ond is Eve’s mode. After the first beam splitter the state
of the system is

|φ1〉 = |tα; tβ〉 |rα; rβ〉 . (45)

Notice that Eve’s and the signal modes are still in a sep-
arable state. This means that Bob’s state will be the
same independently of what Eve does to her modes. For
coherent input states, Bob’s state will depend only on
the number of beam splitters put in by Eve during the
attack. Eqs.(13) and (15) reflect this situation in the
infinitesimal beam splitting case. This simplified the cal-
culations leading to the results in this paper, but the
quantum jump method described in Sec. II can be used
to describe the conditional beam splitting for any kind
of input as long as Eve’s modes are in the vacuum state
initially [1].

After the first beam splitter Eve will try to detect
the presence of photons in her modes. With probabil-

ity p0
1 = p0

c(r
2(|α|2 + |β|2)) = e−µr2

she will detect no
photon. If this happens she will split the signal with a
second beam splitter. She will repeat this process until
she detects some photons in her modes. After the mth

beamsplitting the state of the system is

|φm〉 = |tmα; tmβ〉
∣

∣rtm−1α; rtm−1β
〉

. (46)

To keep the notation simple, we are omitting here the
tested vaccum modes of earlier beam splitters. The total
probability of reaching this state is,

pm =

m−1
∏

i=1

p0
c(µr2t2(m−1)) =

m−1
∏

i=1

e−µr2t2(i−1)

=

= e−µr2
∑

m−1

i=1
t2(i−1)

= e−µ(1−t2(m−1)). (47)

Therefore the total probability that Eve detects some sig-
nal after the mth beam splitter is

p¬0
m = pmp¬0

c (µr2t2(m−1))

= e−µ(1−t2(m−1))(1 − e−µr2t2(m−1)

). (48)

If this event occurs, the splitting stops and the signal
is sent to Bob through the lossless channel. Otherwise
Eve keeps on adding beam splitters until she reaches a
maximum number N of attempts. After the conditional
beam splitting attack with finite beam splitters (cbsf),
Bob will therefore receive a coherent state

∣

∣φbob
m

〉

= |tmα〉
with probability p¬0

m for m = 1 . . .N−1 or pN for m = N .
From here one can calculate the probability of vacuum
signals arriving at Bob’s site in the cbsf
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PB
cbsf

[0] = pNp0
c(µt2N ) +

N−1
∑

m=1

p¬0
m p0

c(µt2m)

= e−µ

(

1 − N +

N−1
∑

n=0

eµr2t2n

)

. (49)

The probability of success of the cbsf attack is,

psucc
cbsf

=

N
∑

m=1

p¬0
m p¬0

c (µt2m) =

N
∑

m=1

pm(1 − e−µt2m

)

= 1 + e−µ

(

N − eµt2N −
N−1
∑

n=0

eµr2t2n

)

(50)

Notice that Eqs. (48) and (47) and the derived quantities
are in agreement up to first order in r2 with the corre-
sponding probabilities for the infinitesimal cbs derived
with the quantum jump method, i.e. Eqs. (14) and (16)
(with r2 = τ

N
ǫ2).

In order to match Bob’s probability of detecting a non-
vacuum signal with the result he would expect from the
lossy channel, Eve has now two free parameters: the max-
imum number N of beam splitters used and their trans-
mission amplitude t. From the infinitesimal cbs results
we know that for small reflection coefficients (i.e. t ∼ 1),
t2N ≈ γ2

τ taking γ2
τ from Eq. (19). Of course, for a finite

N this approximation will not hold when we are in or
near the region η < ηmin

cbs
which corresponds to τ → ∞.

The reason for this is that now we are dealing with fi-
nite beam splitters and accordingly, for any given N , we
can ‘mimic’ a lossy channel with arbitrarily high losses.
For the same reason now we are not forced to block any
signals as done for the cbs in the high losses regime.

To get the quantitative results presented in the rest of
this section we have to find numerically the condition on
Eve’s free parameters (t and N) such that Bob’s expecta-
tions on the number of non-vacuum signals are fulfilled.
For a given N we use Newton’s method to find the value
of t for which PB

cbsf
[0] (49) equals to PB

η [0] (12), taking

a starting value of to = η
1

2N .

In Fig. 12 and 13 we have plotted the performance
quotient qcbsf = fcbsf

fbs

as a function of µ and η for an

attack using a maximum of two and ten beams splitters
respectively.
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FIG. 12. Ratio between the cbsf with two beam splitters
and the bs success probabilities.
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FIG. 13. Ratio between the cbsf with ten beam splitters
and the bs success probabilities.

We notice that doing cbsf with only two beam splitters,
Eve already obtains a much bigger fraction of the key
than with the standard beamsplitting attack, e.g for µ =
0.1 and η = 0.1 the key she obtains is qN=2

cbsf
= 2.5 times

longer. With ten beam splitters she almost reaches the
infinitesimal result (compare with Fig. 3). For µ = 0.1
and η = 0.1 the key she obtains is qN=10

cbsf
= 4.7 times

longer.

In Fig. 14 we can compare the key fraction obtained
with the bs, cbs and cbsf with different numbers of
beam splitters.
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FIG. 14. Key fraction for cbs (solid), cbsf with N=2
(Dotted), N=5 (Short-dashed), N=10 (Long-dashed) and bs

(Dash-dotted).

The number of double-clicks in Bob’s detectors when he
measures in the wrong basis can be calculated from

pdc
cbsf

= pNp¬0
c (

1

2
µt2N )2 +

N−1
∑

m=1

p¬0
m p¬0

c (
1

2
µt2m)2. (51)

The ratio between the double-click probabilities of the
bs and cbsf for various values of N , is plotted Fig. 11
together with the corresponding performance quotients.
This figure shows that, depending on the parameter
regime, an attack with a small number of finite beam
splitters might be more suitable than the infinitesimal
cbs in that the number of double clicks is much closer
to its lossy channel values.
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FIG. 15. Quality factors (black) and double-click ratio
(Gray) for cbs (solid), cbsf with N=2 (Dotted), N=5
(Short-dashed), N=10 (Long-dashed).

VII. CONCLUSION

In this paper we have introduced a novel attack on
weak coherent pulse quantum key distribution in lossy
channels. The conditional beam splitting takes advan-
tage of the multiphoton component of the transmitted
signals to extract information on the encoded bit. This
task is accomplished optimally using the photon number
splitting attack. However, the implementation of the pns

attack entails a quantum non demolition measurement
which is something unattainable, at least at the single

photon level, with the current technology. Until now the
technologically possible alternative to the pns has been
the simple beam splitting attack [23]. For high losses (i.e.
long transmission distances) the bs attack turns out to be
very ineffective. Here we have presented the conditional
beam splitting attack which also requires only linear op-
tical elements and is therefore feasible with present tech-
nology, but is much more efficient than the conventional
beam splitting attack. The cbs attack, thus, shortens
substantially the gap in performance between the ideal
and practical eavesdropping attacks. This is of great im-
portance if one considers that the eavesdroppers success
in a quantum key distribution attack is dictated by the
technology at the moment of the signal transmission. In
contrast with the case of classical cryptographic proto-
cols, no future technologies can help unveil present key
exchanges.

Starting from the simplest scenario in which Eve is ca-
pable of storing her signals until the encoding basis is
announced, we have moved to more realistic situation in
which Eve has no storing capabilities. For this situation
an adapted cbs attack, based on the extraction of two
single photons, has been proven to be advantageous for
some relevant parameter regimes.

Numerical results for the implementation of cbs with
finite reflectivity beam splitters show that using only two
beam splitters one can easily duplicate the efficiency of
the conventional beam splitting, and that the infinitessi-
mal cbs results are reached with the use of a few beam
splitters.

The photon statistics at Bob’s detectors has been stud-
ied and shown to be a matter of concern in this type of
attack. However, we argue that, if handled with care,
this drawback does not disqualify the cbs attacks. We
believe that further elaborations of this basic idea can
lead to attacks which are specialized for certain parame-
ter regimes and other protocols.

ACKNOWLEDGEMENTS

S. M. B. thanks the Royal Society of Edinburgh and
the Scottish Executive Education and Lifelong Learning
Department for financial support. J.C. acknowledges the
Academy of Finland (project 4336) and the European
Union IST EQUIP Programme for financial support.

[1] J. Calsamiglia, S.M. Barnett, N. Lütkenhaus and K-
A. Suominen, Phys. Rev. A (in press), and quant-
ph/0106086.

[2] G. S. Vernam, Journal of the American Institute of Elec-
trical Engineers 45, 109 (1926).

[3] S. Wiesner, Sigact News 15, 78 (1983).

12

http://arXiv.org/abs/quant-ph/0106086
http://arXiv.org/abs/quant-ph/0106086


[4] C. H. Bennett and G. Brassard, in Proceedings of IEEE

International Conference on Computers, Systems, and

Signal Processing, Bangalore, India (IEEE, New York,
1984), pp. 175–179.

[5] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Mau-
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