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Quantum state discrimination is a fundamental primitive in quantum statistics where one has to correctly
identify the state of a system that is in one of two possible known states. A programmable discrimination
machine performs this task when the pair of possible states is not a priori known but instead the two possible
states are provided through two respective program ports. We study optimal programmable discrimination
machines for general qubit states when several copies of states are available in the data or program ports. Two
scenarios are considered: One in which the purity of the possible states is a priori known, and the fully universal
one where the machine operates over generic mixed states of unknown purity. We find analytical results for
both the unambiguous and minimum error discrimination strategies. This allows us to calculate the asymptotic
performance of programmable discrimination machines when a large number of copies are provided and to
recover the standard state discrimination and state comparison values as different limiting cases.
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I. INTRODUCTION

Discrimination between given hypotheses is one of the
most basic tasks in our everyday lives. Very often we are
confronted with the necessity of having to identify an option
between some possible choices based on some acquired
evidence. In the quantum setting the discrimination problem
consists of identifying one of two possible states given a
number of identical copies available for measurement. This
task encompasses a plethora of nontrivial theoretical and
experimental implications. In the usual setting the a priori
states are known (i.e., the classical information characterizing
the possible states is provided and the discrimination protocol
is tailored for this specific information). One usually considers
two types of approaches: unambiguous [1] and minimum
error [2] discrimination. An unambiguous protocol is one
where the identification of the state is error free. Of course,
this is only possible stochastically, that is, unless the states
are orthogonal, the protocol must give an inconclusive answer
(the “I do not know” outcome) with a nonvanishing probability.
In the minimum error approach, the protocol always yields a
definite answer, which may be wrong some of the times. An
optimal protocol is one which minimizes the inconclusive or
the error probability. It may also be possible to go continuously
from one case to the other by considering margins of error
probabilities [3]. In spite of being such a fundamental problem,
only very recently a closed expression for the asymptotic
error probability has been obtained (see [4–6] and references
therein), the quantum Chernoff bound, from which metric
distances and state densities [7] can be derived.

Very much in the spirit of universal computers, it is interest-
ing to consider discrimination devices that are not specialized
in a specific discrimination instance but can discriminate
between arbitrary pairs of states [8,9]. In these, the set of
possible states enters the device as “programs,” that is, the
classical description of the states is not provided beforehand,
rather the information is incorporated in a quantum way (this
can also be viewed as an instance of relative information [10]).
These devices have program ports that are loaded with the
program states and a data port that is loaded with the unknown

input state one wishes to identify. The device will identify
the state of the data port as being one of the states fed in
the program ports, but this identification will, in general, be
erroneous with a probability that decreases with the number
of copies of the states entering the ports. One can also regard
these devices as learning machines [11], where the device is
instructed through the program ports about different states,
and based on this knowledge the machine associates the state
in the data port with one of the states belonging to the training
set. Increasing the number of copies of states at the program
and data ports, of course, increases the chances of correct
identification.

It is particularly relevant to understand how the probability
of error scales with an increasing number of copies and
what are the corresponding error rates. The value of this
rate is one of the most relevant parameters assessing the
performance of the device. We will consider the discrim-
ination of two general qubit states, although most of our
results can be generalized to higher-dimensional systems
(see [12,13] for a single-copy continuous variable setting).
For simplicity we will assume that the prior occurrence
probability of each state is identical and compute the unam-
biguous and minimum error rates for optimal programmable
devices.

We first study the performance of such devices for pure
states. We compute the error probabilities for any number of
pure qubit states at the input ports. Some of the results are
already available in the literature [9,14–18], but the way we
formalize the problem here is crucial to treating the more
general mixed state case. In addition, we obtain analytical
expressions that enable us to present the results and study
limiting cases in a unified way. In particular, when the program
ports are loaded with an infinitely large number of copies of the
states we recover the usual state discrimination problem [2]
since it is clear that then one has the classical information
determining the states entering the program ports. On the other
hand, when the number of copies at the data port is infinitely
large, while the number of copies at the program ports are kept
finite, we recover the state comparison problem [19,20].
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We extend the previous pure state study to the case of mixed
input states. In this scenario we only compute the minimum
error probability, as no unambiguous answers can be given if
the states have the same support [21]. The performance of the
device for a given purity of the input states allows us to quantify
how the discrimination power is degraded in the presence of
noise. The expressions here are much more involved, however,
one can still exploit the permutation symmetry of the input
states to write the problem in a block-diagonal form [22,23].
We then obtain closed expressions for the probability of error
that can be computed analytically for a small number of copies
and numerically evaluated for a fairly large number of copies.
We are also able to obtain analytical expressions for some
asymptotic rates. Again, the leading term, as in the pure state
case, is seen to coincide with the average minimum error for
known states.

We also analyze the fully universal discrimination machine
(i.e., a device that works optimally for completely unknown
input states). In this case one has to assume a uniform
distribution for the purity. In contrast to the pure state
distribution, there is no unique choice [24], and different
reasonable assumptions lead to different uniform priors. Here
we consider the hard sphere, Bures, and Chernoff priors.

The paper is organized as follows. In the next section we
obtain the error probabilities for pure states when each program
port is fed with n copies of each state and there are m copies
of the unknown state entering the data port. In Sec. III we
study the asymptotic rates in several scenarios. In Sec. IV
we analyze the performance of these devices when the ports are
loaded with copies of states of known purity and obtain some
interesting limiting cases in Sec. V. We finally obtain the error
rates for the fully universal programmable machine. Some
brief conclusions follow and we end up with two technical
appendices.

II. PURE STATES

Let us start by fixing the notation and conventions used
throughout this paper. We label the two program ports by A and
C. They will be loaded with states |ψ1〉 and |ψ2〉, respectively.
The data port B is the middle one and will be loaded with the
states we wish to identify. We also use the short-hand notation
[ψ] to denote |ψ〉〈ψ | and similarly [ψφ · · ·] = [ψ] ⊗ [φ] ⊗
· · · = |ψ〉〈ψ | ⊗ |φ〉〈φ| ⊗ · · ·. We may also omit the subscripts
A, B, and C when no confusion arises. We assume that the
program ports are fed with n copies of each state and the data
port with m copies of the unknown state. This is a rather general
case for which closed expressions of the error probabilities can
be given. The case with arbitrary nA, nB, and nC copies at each
port is discussed in Appendix A. The expressions are more
involved but the techniques are a straightforward extension of
the ones presented here.

When the state at the data port is |ψ1〉⊗m or |ψ2〉⊗m, the
effective states entering the machine are given by the averages

σ1 =
∫

dψ1dψ2
[
ψ⊗n

1

]
A

[
ψ⊗m

1

]
B

[
ψ⊗n

2

]
C
,

(1)
σ2 =

∫
dψ1dψ2

[
ψ⊗n

1

]
A

[
ψ⊗m

2

]
B

[
ψ⊗n

2

]
C
,

respectively. The integrals can be easily computed using the
Schur lemma

∫
dφ[φ]X = 1

dX
1X, where dX is the dimension

of the Hilbert space spanned by {|φ〉} and 1X is the projector
onto this space. Hence

σ1 = 1

dABdC

1AB ⊗ 1C,

(2)

σ2 = 1

dAdBC

1A ⊗ 1BC,

where 1XY is the projector onto the completely symmetric
subspace of HX ⊗ HY and dXY = tr1XY is its dimension.
For qubits we have dA = dC = n + 1 and dAB = dBC =
n + m + 1.

The structure of the states (2) suggests the use of the
angular momentum basis |jA,jB(jAB),jC ; JM〉 for σ1 and
|jA,jB,jC(jBC); JM〉 for σ2. The quantum numbers jAB =
jA + jB and jBC = jB + jC recall the way the three spins
are coupled to give the total angular momentum J . Here the
angular momenta have a fixed value determined by the number
of copies at the ports jA = jC = n/2, jB = m/2. So, we can
very much ease the notation by only writing explicitly the
labels jAB and jBC . We would like to stress, however, that, in
general, one needs to keep track of all the quantum numbers,
especially when dealing with mixed states as in Sec. IV.

In σ1 the first n + m spins are coupled in a symmetric
way, while in σ2 the symmetrized spins are the last n + m,
thus jAB = (n + m)/2 = jBC . The states are diagonal in
the angular momentum bases discussed previously, and
we have

σ1 = 1

dABdC

m/2+n∑
J=0,1/2

J∑
M=−J

[jAB ; JM],

(3)

σ2 = 1

dAdBC

m/2+n∑
J=0,1/2

J∑
M=−J

[jBC ; JM],

where the lower limit of the first summation takes the value
0 (1/2) for m even (odd). Notice that the spectrum of both
matrices is identical and that the basis elements of their support
differ only in the way the three spins are coupled. Further,
the key feature of the total angular momentum bases is the
orthogonality relation

〈jAB ; JM|jBC ; J ′M ′〉 = 0 ∀J �= J ′ or M �= M ′. (4)

Bases of this type are known as Jordan bases of subspaces [14].
Since a state of the first basis (labeled by jAB) has overlap with
only one state of the second basis (labeled by jBC), the problem
is reduced to a discrimination instance between pairs of pure
states. Then the total error probability is simply the sum of the
contributions of each pair.

In the unambiguous approach, the minimum probability of
an inconclusive result for a pair of states |φ1〉, |φ2〉 with equal
priors is simply P UA(|φ1〉 , |φ2〉) = |〈φ1|φ2〉| [1], hence

P UA = 1

dABdC

∑
JM

|〈jAB ; JM|jBC ; JM〉|. (5)
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These overlaps can be computed in terms of the Wigner
6j symbols [25]

〈jAB ; JM|jBC ; JM〉

= (−1)jA+jB+jC+J
√

(2jAB + 1)(2jBC + 1)

{
jA jB jAB

jC J jBC

}
,

(6)

and they are independent of M [25], therefore in what follows
we omit writing the quantum number M , and we perform the
sum over M in Eq. (5) trivially by adding the multiplicative
factor 2J + 1. Substituting the value of the 6j symbols
for jA = jC = n/2, jB = m/2, jAB = jBC = (n + m)/2, and
setting J = m/2 + k we obtain

〈jAB ; J |jBC ; J 〉 =
(

n

k

)(
n + m

n − k

)−1

, (7)

with k = 0,1, . . . ,n (observe that J takes values from J =
n + m/2 of the totally symmetric space down to J = m/2).

Plugging the overlaps in Eq. (7) into Eq. (5), we obtain

P UA =
n∑

k=0

m + 2k + 1

(n + m + 1)(n + 1)

(m + k)!n!

(m + n)!k!

= 1 − nm

(n + 1)(m + 2)
, (8)

where we notice that the dimension of the subspace of the
total angular momentum J is m + 2k + 1 and in the second
equality we have used the binomial sums

n∑
k=0

(
m + k

m

)
=
(

n + m + 1

m + 1

)
,

(9)
n∑

k=0

k

(
m + k

m

)
=
(

n + m + 1

m + 1

)
n(m + 1)

m + 2
.

In the minimum error approach no inconclusive results
are allowed, but the machine is permitted to give wrong
answers with some probability that one tries to minimize.
This minimum error probability can be computed along the
same lines as in the previous case. Recall that the error
probability P ME for two pure states |φ1〉 , |φ2〉, and equal
a priori probabilities is [2]

P ME(|φ1〉 , |φ2〉) = 1

2
(1 −

√
1 − |〈φ1|φ2〉|2). (10)

The total error probability is just the sum of the contribution
of each pair of states with the same quantum numbers JM ,
{|jAB ; JM〉, |jBC ; JM〉},

P ME = 1

2

[
1 −

n∑
k=0

m + 2k + 1

(n + 1)(n + m + 1)

×
√

1 −
(

(m + k)!n!

(m + n)!k!

)2
]
. (11)

It is instructive to obtain the well-known results when
the ports are loaded with just one copy of each state [9]
(i.e., n = m = 1).

The inconclusive probability in the unambiguous approach
reads

P UA = 1

6

3/2∑
J=1/2

(2J + 1)|〈jAB = 1; J |jBC = 1; J 〉| = 5

6
;

(12)

five out of six times the machine gives an inconclusive result
and only 1/6 of the times identifies the state without error.
Notice that the overlaps for J = 3/2 are one. This must be so
since J = 3/2 corresponds to the totally symmetric subspace,
which is independent of the way the spins coupled. That is,
this subspace is identical for σ1 and σ2. This is the main
source of error as it contributes 4/6 = 4/6 × 1 out of the
total 5/6 error probability. The remaining 1/6 = 2/6 × 1/2
is the contribution of the J = 1/2 subspace, where 2/6 is the
probability of having an outcome on this subspace and 1/2 is
the overlap between the states [cf. Eq. (7)].

The minimum error probability in the one copy case reads

P ME = 1

2

⎛
⎝1 − 1

6

3/2∑
J=1/2

(2J + 1)

×
√

1 − |〈jAB = 1; J |jBC = 1; J 〉|2
)

, (13)

which by using Eq. (7) or directly Eq. (11) gives

P ME = 1

2

(
1 − 1

2
√

3

)
� 0.356. (14)

That is, approximately 1/3 of the times the outcome of the
machine will be incorrect.

The error probability in both the minimum error and
unambiguous approaches, will, of course, decrease when using
more copies of the states at the ports of the discrimination
machine. Equations (8) and (11) give the unambiguous and
minimum error probability for arbitrary values of n and m.
They enable us to study the behavior of the machine for a
large number of copies in the program and the data ports,
which is what we next discuss.

III. ASYMPTOTIC LIMITS FOR PURE STATES

Let us start by considering the case of an asymptotically
large number of copies at the program ports (n → ∞) while
keeping finite the number of copies m at the data port. For the
unambiguous discrimination one obtains from Eq. (8)

lim
n→∞ P UA = 2

m + 2
. (15)

We wish to show that in this limit the programmable machine
has a performance that is equivalent to a protocol consisting
in first estimating the states and then doing a discrimination of
known states. The average of the inconclusive probability of
this protocol over all input states should coincide with Eq. (15).
Recall that for known |ψ1〉 and |ψ2〉 states, when a number m

of copies of the unknown state is given, this probability reads

P UA(ψ1,ψ2) = |〈ψ1|ψ2〉|m . (16)
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One can do an explicit calculation of the average
〈P UA(ψ1,ψ2)〉 = 1/2

∫ π

0 sin θ cosm θ/2, but it is amusing to
obtain it in a very simple way from the Schur lemma∫

dψ2(|〈ψ1|ψ2〉|2)
m
2 = 〈ψ1|⊗ m

2

(∫
dψ2[ψ2]⊗

m
2

)
|ψ1〉⊗ m

2

= 1

dm/2
= 1

m/2 + 1
, (17)

where dm/2 is the dimension of the symmetric space of m/2
qubits (notice that stricto sensu this procedure is only valid for
m even). Plugging this average into Eq. (16) one immediately
recovers Eq. (15).

Now we turn our attention to the minimum error probability.
Taking n → ∞ and using the Stirling approximation z! ≈
zze−z

√
2πz in Eq. (11), one obtains

lim
n→∞ P ME = 1

2

[
1 − 2

∫ 1

0
dx x

√
1 − x2m

]

= 1

2

[
1 −

√
π

2

�(1 + 1/m)

�(3/2 + 1/m)

]
, (18)

where we have defined x = k/n and used the
Euler-McLaurin summation formula at leading order∑n

k=0 f (k) � n
∫ 1

0 dxf (nx).
This result could be easily anticipated from the minimum

error probability with classical knowledge of the pure states.
Recall that the minimum error probability given m identical
copies is

P ME(ψ1,ψ2) = 1 −
√

1 − |〈ψ1|ψ2〉|2m

2
, (19)

and we just have to compute the average for all pairs of the
above expression. Using |〈ψ1|ψ2〉|2 = cos2 θ/2, where θ is
the relative angle between the Bloch vectors of the two states,
one has

〈P ME(ψ1,ψ2)〉 = 1

2

[
1 − 1

2

∫ π

0
dθ sin θ

√
1 − cos2m(θ/2)

]
,

(20)

and performing the change of variables x = sin θ/2 this
equation is cast exactly in the form of Eq. (18).

What cannot be anticipated is the next order O(1/n), which
gives very relevant information on how fast the protocol
reaches the asymptotic value (18). A lengthy, but rather
straightforward, calculation yields the remarkable result that
this term has a coefficient which coincides with the value of
the integral

∫ 1
0 dx x

√
1 − x2m. At this order we therefore can

write

P ME = 1

2
−

√
π

4

�(1 + 1/m)

�(3/2 + 1/m)

(
1 − 1

n

)
. (21)

We now analyze the complementary case, that is, when the
number of copies at the data port is infinitely large, m → ∞,
while the number n of copies at the program ports is kept
finite. In this limit we have perfect knowledge of the data state
|ψ〉, but we do not know to which program port it should be
associated. Observe that this situation is very much the same
as state comparison [19].

In this scenario the inconclusive probability in the unam-
biguous approach reads from Eq. (8)

lim
m→∞ P UA = 1

n + 1
. (22)

Let us see that this agrees with the average performance of the
standard state comparison. If the data state is the same as the
program state in the upper or lower port, the effective states to
be discriminated are

σ1 = 1

dn

[ψ⊗n] ⊗ 1n,

(23)

σ2 = 1

dn

1n ⊗ [ψ⊗n],

respectively, where dn = n + 1 is the dimension of the
symmetric space of n qubits and 1n is the projector onto
this subspace. The minimal inconclusive probability for these
two states can be obtained with a positive operator-valued mea-
sure (POVM) whose elements are {E1 = [ψ⊗n] ⊗ 1n,E2 =
[ψ⊗n]⊥ ⊗ 1n}, where [ψ⊗n]⊥ = 1n − [ψ⊗n], that is, with a
POVM that checks whether the first state is the state |ψ〉 or
not; notice that a POVM checking the second register will
work equally well. Thus, we have an unambiguous answer
whenever the second outcome is obtained and an inconclusive
answer whenever the first outcome occurs, which happens with
probability

P UA(ψ) = 1

2
(trE1σ1 + trE1σ2) = 1

n + 1
, (24)

independently of the state |ψ〉.
The minimum error probability in this limit can be tackled

in a similar fashion. The asymptotic expression of Eq. (11),
though not as direct as in the unambiguous case, is rather
straightforward to obtain. Notice that the dominant factor in
the term containing factorials inside the square root is m−2(n−k).
So, we can effectively replace the square root term by 1, for
all k < n. Taking into account that for k = n the square root
vanishes, we have

lim
m→∞ P ME = 1

2

(
1 − n

n + 1

)
= 1

2(n + 1)
. (25)

The minimum error probability of a strategy that first
estimates perfectly the input state and then tries to associate
the correct label to it is given by the Helstrom formula for σ1

and σ2 [2]

P ME = 1
2

(
1 − 1

2‖σ1 − σ2‖
)
, (26)

where ‖A‖ = tr
√

A†A is the trace norm of operator A.
Substituting the expression of the states (23) we obtain

P ME = 1

2

(
1 − 1

2(n + 1)
‖[ψ⊗n] ⊗ [ψ⊗n]⊥

− [ψ⊗n]⊥ ⊗ [ψ⊗n]‖
)

= 1

2

(
1 − 2

2(n + 1)
‖[ψ⊗n] ⊗ [ψ⊗n]⊥‖

)

= 1

2

(
1 − n

n + 1

)
= 1

2(n + 1)
, (27)
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where in the first equality we have subtracted the common
term [ψ⊗n] ⊗ [ψ⊗n] from both states, in the second we have
used the orthogonality of the operators and in the last equality
we take into account that tr[ψ⊗n]⊥ = tr(1n − [ψ⊗n]) = n

(i.e., one unit less than the dimension of the corresponding
symmetric space) . As expected, the result is again independent
of |ψ〉.

To end this section we compute the asymptotic error
probabilities for the symmetric case, that is, when all the ports
are loaded with the same m = n (and large) number of copies.

In the unambiguous approach when n = m → ∞ the first
nonvanishing order of Eq. (8) reads

P UA = 3

n
+ · · · . (28)

To compute the minimum error probability, it is convenient
to write Eq. (11) for n = m as

P ME = 1

2

n∑
k=0

pk

(
1 −

√
1 − c2

k

)
, (29)

where

pk = n + 1 + 2k

(2n + 1)(n + 1)
, (30)

and

ck =
(

n+k
n

)
(

2n
n

) . (31)

We first observe that ck is a monotonically increasing function
and hence it takes its maximum value at k = n. Second, we
note that around this point(

n + k

n

)
� 2(n+k)H ( n

n+k
)

� 2(n+k)H (1/2) = 2n+k, (32)

where H (x) = −x ln x − (1 − x) ln(1 − x) is the Shannon
entropy of a binary random variable and we have used that
k ≈ n and H (1/2) = 1. Similarly, one has(

2n

n

)
� 22nH (1/2) = 22n, (33)

and hence ck � 2−(n−k). With this, the probability of error in
this limit reads

P ME = 1

2

∞∑
k=0

pk

⎡
⎣1 −

√
1 −

(
1

4

)n−k

⎤
⎦ . (34)

Finally, we perform the change of variables k → n − k and
use that in Eq. (30) pn−k � 3/(2n) for k � 0 to obtain

P ME = 3

4n
ζ (1/4) ≈ 0.882

n
, (35)

where we have defined the function

ζ (x) =
∞∑

k=0

(1 −
√

1 − xk), (36)

which converges very quickly to its exact value (the first four
terms already give a value that differ in less than 10−3 from
the exact value).

IV. MIXED STATES

We now move to the case when the program and data ports
are loaded with mixed states. This situation arises for instance
when there are imperfections in the preparation or noise in
the transmission of the states. It is reasonable to suppose that
these imperfections have the same effect on all states (i.e., to
consider that the states all have the same purity r). The input
states are then tensor products of

ρi = 1 + r �ni �σ
2

, (37)

where �ni is a unitary vector and �σ = (σx,σy,σz) are the usual
Pauli matrices. In what follows we assume that only the purity
is known (i.e., one knows the characteristics of the noise
affecting the states, but nothing else). This means that the
averages will be performed over the isotropic Haar measure
of the S2 sphere, in the same manner as for the pure states. At
the end of this section we also analyze the performance of a
fully universal discrimination machine, that is, when not even
the purity is considered to be known.

Notice that mixed states can only be unambiguously
discriminated if they have different supports [21], which is
not the case when the ports are loaded with copies of the
states (37) as they are full-rank matrices. Therefore, only
the minimum error discrimination approach will be analyzed
here. It is worth stressing that the computation of the optimal
error probability in the multicopy case is very nontrivial, even
for known qubit mixed states. Only recently have feasible
methods for computing the minimum error probability for
a rather large number of copies been developed and the
asymptotic expression of this probability obtained [4,6].
The main difficulty can be traced back to the computation of
the trace norm [see Eq. (26)] of large matrices. The dimension
of the matrices grows exponentially with the total number of
copies entering the machine, and for a relative small number of
them the problem becomes unmanageable. However, as it will
be clear, it is possible to exploit the permutation symmetry of
the input states to write them in block-diagonal form [22,23],
crucially reducing the complexity of the problem.

The two effective states we have to discriminate are

σ1 =
∫

dn1dn2ρ
⊗n
1 A ⊗ ρ⊗m

1 B ⊗ ρ⊗n
2 C,

(38)
σ2 =

∫
dn1dn2ρ

⊗n
1 A ⊗ ρ⊗m

2 B ⊗ ρ⊗n
2 C,

where dni = d	i/(4π ) is the invariant measure on the two-
sphere. Any state having permutation invariance (as, e.g., ρ⊗n)
can be written in a block-diagonal form using the irreducible
representations of the symmetric group Sn. Each block is
specified by the total angular momentum j and a label α

that distinguishes the different equivalent representations for
a given j

ρ⊗n =
⊕
j,α

ρjα. (39)
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The angular momentum takes the values j = n/2,

n/2 − 1, . . . ,1/2(0) for odd (even) n and the number of
equivalent representations for each j is [23]

νn
j =

(
n

n/2 − j

)
2j + 1

n/2 + j + 1
, (40)

That is α = 1, . . . ,νn
j . For each block we have [23]

trρjα =
(

1 − r2

4

)n/2−j j∑
k=−j

(
1 − r

2

)j−k (1 + r

2

)j+k

≡ (2j + 1)Cn
j , (41)

which, of course, is the same for all equivalent irreducible
representations (i.e., independent on the label α). We sketch
here the origin of the factors appearing in Eq. (41) (full
details can be found in [23]). The first factor comes from
the contribution from the n/2 − j singlets present in a
representation j made up of n spin-1/2 states. The summation
term is the trace of the projection of the remaining states in the
symmetric subspace with total angular momentum j , where
we can use the rotational invariance of the trace to write each
state in the diagonal form (

1+r
2 0

0 1−r
2

). This term simply reads

tj =
j∑

k=−j

(
1 − r

2

)j−k (1 + r

2

)j+k

= 1

r

[(
1 + r

2

)2j+1

−
(

1 − r

2

)2j+1
]

, (42)

and hence

Cn
j = 1

2j + 1

(
1 − r2

4

)n/2−j

tj . (43)

Very much in the same way as it happened in previous
sections, the only difference between the diagonal basis of σ1

and σ2 is the ordering of the angular momenta couplings. In
σ1 we first couple subspaces A and B and obtain

ρAB =
∫

dn1ρ
⊗n
1 A ⊗ ρ⊗m

1 B =
∑
ξAB

Cn+m
jAB

1ξAB
, (44)

where

1ξAB
=
∑
MAB

|ξABMAB〉〈ξABMAB | , (45)

is the projector onto the subspace with quantum numbers
ξAB = {jA,αA,jB,αB,jAB} and Cn+m

jAB
is defined in Eq. (41).

Notice that Cn+m
jAB

depends only on the purity of the state and
on the total angular momentum jAB . Notice also that the tensor
product of a mixed state has projections in all subspaces and
the blocks are not uniquely determined by the value of jAB

(i.e., one has to keep track of the labels jA and jB as well).
Of course, subspaces with different quantum numbers ξAB are
orthogonal (i.e., tr[1ξ1ξ ′ ] = δξξ ′ tr1ξ ). When coupling the third
system one plainly adds the quantum numbers ξC = {jC,αC}.

In the notation we have developed so far, the diagonal
bases of σ1 and σ2 are written as B1 = {|ξABξC ; JM〉} and

B2 = {|ξAξBC ; JM〉}, respectively. Obviously, each set con-
tains 22n+m orthonormal states and Eq. (38) reads

σ1 =
∑
ξABξC

∑
JM

Cn+m
jAB

Cn
jC

[ξABξC ; JM],

(46)
σ2 =

∑
ξAξBC

∑
JM

Cn
jA

Cn+m
jBC

[ξAξBC ; JM].

We just have to compute the minimum error from the Helstrom
formula (26) for these two states. It is convenient to define the
trace-norm term

T = ‖σ1 − σ2‖, (47)

so that

P ME = 1
2

(
1 − 1

2T
)
. (48)

To compute T we need to know the unitary matrix � that
transforms B2 into B1 or vice versa. The elements of this
unitary are given by the overlaps between the elements of
both bases 〈ξABξC ; JM|ξ ′

Aξ ′
BC ; J ′M ′〉. We observe that these

overlaps are nonvanishing only if jX = j ′
X, αX = α′

X (X =
A,B,C) and J = J ′,M = M ′. Furthermore, as mentioned
previously, their value does not depend on M or αX, thus,
sums over these quantum numbers simply amount to introduce
the corresponding multiplicative factors. Therefore, it is
useful to introduce a label containing the quantum numbers
that determine the orthogonal blocks in B1 and B2 that
may have nonvanishing overlaps, ξ = {jA,jB,jC,J }, and the
corresponding multiplicative factor

γξ = νn
jA

νm
jB

νn
jC

(2J + 1), (49)

where νn
j is given in Eq. (40). Equation (47) then reads

T =
∑

ξ

γξT
ξ =

∑
ξ

γξ

∥∥σ (ξ )
1 − �(ξ )σ

(ξ )
2 �(ξ )T

∥∥, (50)

where the explicit expressions of the matrix elements are[
σ

(ξ )
1

]
jABj ′

AB

= δjABj ′
AB

Cn+m
jAB

Cn
jC

,

(51)[
σ

(ξ )
2

]
jBCj ′

BC

= δjBCj ′
BC

Cn
jA

Cn+m
jBC

,

and

�
(ξ )
jAB ,jBC

= 〈ξ,jAB |ξ,jBC〉. (52)

Recall that the overlap (52) is independent of the quantum
number labeling the equivalent representations (recall also that
it is independent of M) and therefore is given by Eq. (6).

The computation of the minimum error probability reduces
to a sum of trace norms of small-size Helstrom matrices that
have dimensions of the allowed values of jAB and jBC for
given ξ = {jA,jB,jC,J }. Hence

P ME = 1

2

⎛
⎝1 − 1

2

∑
ξ

γξT
ξ

⎞
⎠ , (53)

and this computation can be done very efficiently.
We would like to show the analytical results for the simplest

case of having just one state at each port (i.e., when n =
m = 1). In this situation we have fixed values jA = jB = jC =
1/2, the total angular momentum can be J = 3/2,1/2, and
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jAB = 1,0 (and similarly for jBC). Here there is no degeneracy,
the number of equivalent representations defined in Eq. (40)
is 1, and therefore the multiplicative factor (49) simply reads
γξ = 2J + 1. The only relevant quantum number in this case
is ξ = J , as all the others are fixed, and we do not need to
write them explicitly. The minimum error probability is then

P ME = 1

2

⎡
⎣1 − 1

2

3/2∑
J=1/2

(2J + 1)
∥∥σ (J )

1 − �(J )σ
(J )
2 �(J )T

∥∥
⎤
⎦ .

(54)

The term of the sum corresponding to J = 3/2 vanishes
since it corresponds to the projection of σ1,2 onto the
completely symmetric subspace, which is identical for both
states. Indeed, in this subspace σ

(3/2)
1 = σ

(3/2)
2 = C2

1C
1
1/2 =

(3 + r2)/24, where we have used Eq. (43), and from Eq. (52)
we obtain �(3/2) = 1. In the subspace J = 1/2 we have

σ
(1/2)
1 = σ

(1/2)
2 =

(
C2

1C
1
1/2 0

0 C2
0C

1
1/2

)

=
(

1
24 (3 + r2) 0

0 1
8 (1 − r2)

)
, (55)

and

�(1/2) =
(

1
2

√
3

2√
3

2 − 1
2

)
. (56)

Plugging these expressions into Eq. (54) we obtain the
minimum error probability of the one-copy state

P ME = 1

2

(
1 − r2

2
√

3

)
. (57)

As expected, when r → 1 we recover the pure state value (14).
Numerical results of the minimum error probability as a

function of the purity of the input states for the symmetric
case n = m are depicted in Fig. 1. One sees that for low values
of n (n � 3) the dependence on the purity is not very marked,
the curves are concave almost in the whole range of the purity.
For larger n, however, there is an interval of purities where the
behavior changes quite significantly. For instance, for n = 29,
the inflection point occurs at r ≈ 0.3. At very large values
of n one expects a step-like shape with an inflection point
approaching r = 0 because the probability of error remains
very small for r �= 0 and is strictly 1/2 at r = 0. The shape
of the curves is explained by the existence of two distinct
regimes. For high purities the probability of error is well fitted
by a linear function in the inverse of the number of copies. We
get P ME � 0.88/(nr2) where the value 0.88 coincides with
the analytical value computed for the pure states in Eq. (35).
Of course, this approximation cannot be valid for low purities.
In this range of low purity the minimum error probability
is very well approximated by the Gaussian function P ME �
1/2 exp[−nr2/(2

√
3)], where we have taken the argument of

the exponential from the exponentiation of the exact 1 × 1 × 1
case (57). This approximation works for purities in the interval
of the width of the Gaussian (i.e., up to ∼1/

√
n). Therefore,

as n increases the asymptotic approximation P ME ∝ 1/(nr2)
extends its validity to almost the whole range of purities, and

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5
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E

r

FIG. 1. (Color online) Error probability P ME for n = m = 3
(blue dashed line),11 (green circles) and 29 (yellow squares) versus
purity. The fit P ME � 0.882/(nr2) in the regime of high purities
for n = 11 and n = 29 and the Gaussian approximation P ME �
1/2 exp[−nr2/(2

√
3)] in the regime of low purities for all cases is

represented (solid lines).

the expected jump discontinuity develops in r = 0 as n →
∞. Similar information is depicted in Fig. 2, where the error
probability is plotted as function of the number of copies n

for different purities. We have superimposed the asymptotic
result, which is seen to yield a very good approximation to the
exact error probability already for n � 20.

V. ASYMPTOTIC n × 1 × n

As in previous sections, it is interesting to study the
performance of the machine in the asymptotic regimes. A
particularly important instance where it is possible to obtain
closed expressions is the case when the number of copies at
the program ports is asymptotically large and there is one state
at the data port. We show how to compute the leading order
and sketch the generalizations needed to obtain the subleading
term.

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

0.5

P
M

E

n

FIG. 2. (Color online) Error probability P ME for r = 0.2 (thin
blue solid line), r = 0.5 (brown dashed line), r = 0.7 (green dotted
line) and r = 1 (red dot-dashed line) versus n (n = m is assumed).
Numerical points have been joined for an easier visualization. The
asymptotic approximation 0.088/(nr2) is represented (thick solid
line).
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Observe first that jAB can only take the values jAB = jA ±
1/2 and similarly for jBC . Therefore σ

(ξ )
1,2 are 2 × 2 matrices

(except in the extremal case of J = jA + jC + 1/2 which is
one dimensional). It is useful to write

σ (j ) = Cn
jA

Cn
jC

(
R+(j ) 0

0 R−(j )

)
, (58)

with

R±(j ) = Cn+1
j±1/2

Cn
j

. (59)

With this definition one simply has [see Eq. (51)]

σ
(ξ )
1 = σ (jA), and σ

(ξ )
2 = σ (jC). (60)

We further notice that for large n

νn
j Cn

j ≈ 1

n/2 + j + 1

1 + r

2r

×
√

2

nπ (1 − r2)
exp

[
− n

(2j/n − r)2

2(1 − r2)

]
. (61)

Defining y = 2j/n and using the Euler-Maclaurin summation
formula, we have for a generic function f (j )

∑
j

νn
j Cn

j f (j ) ≈ 1 + r

2r

∫ ∞

−∞

dy Gn(y)

n/2 + ny/2 + 1
f
(ny

2

)
,

(62)

where we have extended the limits of integration from
(0,1) to (−∞,∞), which is legitimate for large n, and
defined

Gn(y) =
√

n

2π (1 − r2)
exp

[
− n

(y − r)2

2(1 − r2)

]
, (63)

a Gaussian distribution centered at y = r with variance
σ 2 = (1 − r2)/n. Notice that at leading order n → ∞, G∞ ≈
δ(y − r), and hence∑

j

νn
j Cn

j f (j ) ≈ 1

nr
f
(nr

2

)
. (64)

Notice also that at this order

R±(j ) ≈ R±
(nr

2

)
= 1 ± r

2
. (65)

There only remains to compute the unitary matrix Eq. (52). Ob-
serve that the total angular momentum takes values J = |jA −
jC | + 1/2 + k with k = 0,1, . . . ,2 min{jA,jC}. The leading
order is rather easy to write (the subleading term, although
straightforward, is far more involved and we will not show
it here). At this order we have J = 1/2 + k and k =
0,1, . . . ,nr and the matrix elements computed from Eq. (6)
yield

�(ξ ) = 1

nr

(
k

√
(nr)2 − k2√

(nr)2 − k2 −k

)
. (66)

Plugging Eqs. (58)–(66) into Eq. (50) one gets

T �
nr∑

k=0

2k
2

n3r2

√
(nr)2 − k2, (67)

where the sum over jA and jC has been trivially performed by
substituting their central value nr/2 in the summand and the
only remaining multiplicative of γξ [cf. Eq. (49)] is 2J + 1 �
2k. Finally, defining x ≡ k/nr and using the Euler-Maclaurin
approximation as in Eq. (18) we obtain

T � 4r

∫ 1

0
dx x

√
1 − x2 = 4r

3
, (68)

and hence

P ME � 1

2
− r

3
, (69)

which obviously coincides with the pure state result Eq. (18)
for m = 1 and r → 1.

As for the computation of the next-to-leading order, the
integrals approximating the sums over jA and jC have to
incorporate the fluctuations around the central value, that
is, one defines jA = n

2 (r + ηA) and jC = n
2 (r + ηC), where

the variables ηX have effective dimension n−1/2. Then one
can expand the matrix elements of σ1,2, �, and the terms
of νn

j present in Eq. (62), taking into account the effective
dimensionality of all the terms [notice that k → n(r + η)x,
where the integration range of x is (0,1)]. One then performs
the sum in k by means of the Euler-Maclaurin summation
formula as before. Finally, one computes the integration in
jA/B taking into account that the range of the variables ηA/B can
be taken to be (−∞,∞). After a somewhat lengthy calculation
we obtain

P ME � 1

2
− r

3
+ 1

3nr
. (70)

Notice that the limit r = 0 is singular and not surprisingly the
expansion breaks down for purities of order 1/n. As it should,
the error probability (70) increases monotonically with the
purity.

In Fig. 3 we plot the error probability as a function of the
purity for n = 20 and n = 79. One sees that the asymptotic
expression (70) approximates very well the minimum error
probability even for a small number of copies. For larger n

(e.g., for n = 79) the approximation works extremely well
down to values below r = 0.3.

We finish this section by showing that the leading term
(69) coincides with the average error of a device that first
estimates the mixed states at the program ports and afterward
does the usual minimum error discrimination of the data state.
From the Helstrom formula (26) particularized for mixed qubit
states one has

P ME = 〈
1
2

(
1 − 1

2 |�r1 − �r2|
)〉
, (71)

where the average is taken over all possible orientations of the
Bloch vectors �r1 and �r2. For equal purity states it simply reads

P ME = 1

2

(
1 − r

2

∫ π

0
dθ sin θ sin θ/2

)
= 1

2
− r

3
. (72)
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FIG. 3. (Color online) Error probability P ME for n = 20 (yellow
circles) and n = 79 (green squares) versus purity. The asymptotic
behavior given by Eq. (70) is represented for both cases.

VI. FULLY UNIVERSAL DISCRIMINATION MACHINE

Let us finally address the fully universal discrimination
machine (i.e., a machine that distinguishes states from which
nothing is assumed to be known, not even its purity). For this
type of machine, we need to specify a prior distribution for
the purity. While the isotropy of the angular variables yields
a unique uniform distribution for the angular variables, the
Haar measure on the two-sphere used in previous sections,
the corresponding expression for a fully unbiased distribution
of the purity w(r) is not uniquely determined. This is a
longstanding issue, and several priors have been suggested
depending on the assumptions made [7,24]. Here we will not
stick to a particular distribution, rather we will show results
for three reasonable distributions. The actual values of the the
probability of error may depend on the chosen prior, but the
overall performance is seen to be very similar.

The most straightforward, but perhaps not very well
grounded, choice is that of the distribution of a hard sphere
w(r) ∝ r2, that is, a normalized integration measure given by

dρHS = 3r2dr
d	

4π
. (73)

The Bures distribution is far better motivated. It corresponds
to the volume element induced by the fidelity distance [26]. It is
monotonically decreasing under coarse graining [24] and it has
been argued that it corresponds to the maximal randomness of
the signal states [27]. In this case one has w(r) ∝ r2/

√
1 − r2.

Notice that this distribution assigns larger weights to pure
states, as their distinguishability in terms of the fidelity is
larger than that of mixed states. The integration measure reads

dρBu = 4

π

r2

√
1 − r2

dr
d	

4π
. (74)

Last, we also consider the recently proposed Chernoff
distribution [4]. It is the prior induced by the Chernoff
distance which has a clear operational meaning in terms of
the distinguishability between states. By construction it is
monotonically decreasing under coarse graining. This measure
assigns even larger weights to states of high purity and lower
to the very mixed ones. This assignment is, again, based on
the distinguishability properties, but in terms of the asymptotic
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FIG. 4. (Color online) Error probability P ME for the hard sphere
(green solid line), Bures (blue dotted line), and Chernoff (red dashed
line) priors versus n (n = m is assumed). The points correspond to the
error probability for a fixed r = 0.93; its proximity to the Chernoff
curve exposes the fact that this prior gives larger weights to states of
high purity.

behavior of the error probability. The measure can be written
as [4]

dρCh = 1

π − 2

(
√

1 + r − √
1 − r)2

√
1 − r2

dr
d	

4π
. (75)

The effective states we have to discriminate are

�k =
∫

dρ1dρ2ρ
⊗n
1 A ⊗ ρ⊗m

k B ⊗ ρ⊗n
2 C (k = 1,2), (76)

where dρk takes the expressions of the measures (73) through
(75). Note that the block structure of the states is the same
as before, as it only depends on the permutation invariance
of the input states, which remains untouched. Further, we can
use rotational invariance in the same fashion as in Eqs. (44)
and (46). Therefore, here it is only required to compute the
average of the coefficients Cn

j in Eq. (41) according to priors
(73) through (75). To calculate the minimum error probability
of this fully universal machine one simply uses Eq. (53) for
the states (46) with the averaged coefficients 〈Cn

j 〉 computed
in Appendix B.

In Fig. 4 we present the minimum error probability of the
fully universal machine for the three priors discussed for an
equal number of program and data states up to n = m = 26.
As anticipated, the smaller average error corresponds to
the Chernoff distance because states with higher purity are
assigned a larger weight, and these are easier to discriminate.
The probability of error, as somehow expected, is inversely
proportional to the number of copies, and attains very similar
values than for the discrimination of states with fixed known
purity of the order of r ∼ 0.9.

VII. CONCLUSION

We have studied the problem of programmable discrimina-
tion of two unknown general qubit states when multiple copies
of the states are provided. For pure states we have obtained
the optimal unambiguous discrimination and minimum-error
probabilities, Eqs. (8) and (11), respectively. Some results
along these lines can be found in [17], however, no closed
expressions were given there. Knowing the error in the
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asymptotic regimes is very relevant information as it allows
us to assess and compare the performance of devices in
a way which is independent of the number of copies. We
have obtained analytical expressions for the leading and
subleading terms in several cases of interest. As can be
anticipated, when the number of copies at the program
ports is asymptotically large at leading order we recover the
average of the usual discrimination problem of known states
Eqs. (17) and (20). When the data port is loaded with an
asymptotically large number of copies, we recover the state
comparison averaged error Eqs. (24) and (27). These cases
correspond to the measure and discriminate protocols where
the measurement unveils the classical information about the
states.

We have also addressed the programmable discrimination
of copies of mixed states. We have obtained the minimum-error
probability when the ports are loaded with copies of qubits of
known purity Eq. (53). We have assumed that all states have
the same purity. This would correspond to a scenario where
all the initially pure data and program states are subject to the
same depolarizing noise before entering the machine. Closed
analytical results for a small number of copies can be obtained
and efficiently computable expressions for a fairly large
number of copies are given. The asymptotic analytical results
show very good agreement with the numerics. The latter show a
characteristic 1/N dependence with the number N of available
copies—in contrast to the usual exponential decay found in
standard (nonuniversal) state discrimination—and provide a
very good approximation already for a relatively low number
of copies when the states have high purity. For very mixed
states the error probability has a drastically different behavior.
Logically, in both cases the error probability monotonically
decreases with increasing purity r , but in the low-purity regime
the dependence is much less pronounced. The range of purities
exhibiting this behavior shrinks as the number of copies in-
creases, and the characteristic 1/N behavior of the asymptotic
regime extends its validity over almost the whole range of
purities.

Finally, we have studied the fully universal discrimination
machine, a device that takes in states of which nothing is
known (i.e., not even its purity). We compute the minimum
error probability for three reasonable prior distributions of the
purity: the hard sphere, Bures, and Chernoff (see Fig. 4). The
latter is seen to give the lowest error probability. This comes
as no surprise since the Chernoff distribution assigns larger
weights to pure states (because they are better distinguished).
Our results also indicate that the fully universal discrimination
states yield an error probability comparable to the discrimi-
nation of states of known purity, being that remarkably large
(r ∼ 0.9).
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APPENDIX A: ARBITRARY COPIES OF PURE STATES

In this Appendix we present the unambiguous discrimi-
nation and minimum error probabilities when the number of
copies nA,nB,nC loaded at the machine ports is completely
arbitrary. Note that in this case the global states σ1 and σ2

[cf. Eq. (2)] may have different dimensions, for d1 = (nA +
nB + 1)(nC + 1) is, in general, not equal to d2 = (nA + 1)
(nB + nC + 1). One can easily convince oneself that the
support of the state with the smallest dimension is always
contained in the support of the other, and hence the problem can
be solved in very much the same way as in the main text simply
by taking into account that the error probabilities now only
contain contributions from the intersection of the supports.
Without loss of generality we can assume from now on that
nA � nC . As discussed in the main text, the error probabilities
are computed by adding the pairwise contributions of the
state bases in the common support, the main difference being
that σ1 and σ2 do not have equal coefficients in front of the
projectors and that the overlaps in Eq. (6) will have a slightly
more complicated expression. Here we have jA = nA/2,
jB = nB/2, jC = nC/2, jAB = (nA + nB)/2, and jBC =
(nB + nC)/2.

Using Eq. (6) we obtain that the probability of an inconclu-
sive result in the unambiguous approach is

P UA = 1√
d1d2

nC∑
k=0

(nA + nB − nC + 2k + 1)

×
√√√√(

nA+nB−nC+k

nB

)(
nB+k

nB

)
(
nA+nB

nB

)(
nB+nC

nB

) . (A1)

Note that when nA = nC the square root term simplifies
and we recover the closed form given in the main text
[cf. Eq. (8)].

The minimum error probability can be computed entirely
along the same lines,

P ME = 1

2

⎡
⎣1 − 1√

d1d2

nC∑
k=0

(nA + nB − nC + 2k + 1)

×
√√√√1 −

(
nA+nB−nC+k

nB

)(
nB+k

nB

)
(
nA+nB

nB

)(
nB+nC

nB

)
⎤
⎦ , (A2)

where the binomial factors inside the square root are the
squared overlaps given in Eq. (6).

APPENDIX B: AVERAGED Cn
j COEFFICIENTS

Here we compute the average of the coefficients [see
Eq. (41)]

Cn
j = 1

2j + 1

(
1 − r2

4

)n/2−j

×
j∑

k=−j

(
1 − r

2

)j−k (1 + r

2

)j+k

, (B1)
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for the hard sphere, Bures, and Chernoff priors, Eqs. (73)
through (75), considered in the fully universal discrimination
machine.

For the hard-sphere prior we have

〈
Cn

j

〉
HS = 3

∫
Cn

j r2dr

= 6
�(n/2 + j + 2)�(n/2 − j + 1)

�(n + 4)
. (B2)

The Bures distribution yields

〈
Cn

j

〉
Bu = 4

π

∫
Cn

j

r2

√
1 − r2

dr

= 4

π

�(n/2 + j + 3/2)�(n/2 − j + 1/2)

�(n + 3)
. (B3)

The averages for the Chernoff prior are a bit more involved,
but still can be given in a closed form as

〈
Cn

j

〉
Ch = 1

π − 2

∫
Cn

j

(
√

1 + r − √
1 − r)2

√
1 − r2

dr

= 2

(π − 2)(2j + 1)

j∑
m=−j

×
[
B1/2

(
n + 1 − 2m

2
,
n + 1 + 2m

2

)

− 2B1/2

(
n − 2m + 2

2
,
n + 2m + 2

2

)]
, (B4)

where Bx(a,b) = ∫ x

0 ta−1(1 − t)b−1dt is the incomplete beta
function [28].
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