1,094 research outputs found

    Effect of additive concentration during copper deposition using EnFACE electrolyte

    Get PDF
    Copper deposition from solutions using high concentration of acid, metal ions and polyethylene glycol (PEG), and bis-(3-sulphopropyl) disulphide (SPS) and chloride ions (Cl-) is well known. A recent maskless micropatterning technology, which has the potential to replace the traditional photolithographic process, called EnFACE, proposed using an acid-free, low metal ion solution which is in direct contrast to those used in standard plating technology. In this work copper has been deposited using both standard electroplating solutions and those used in the EnFACE process. In the standard electrolyte 0.63 M CuSO4 and 2.04 M H2SO4 has been used, along with Gleam additives supplied by Dow Chemicals. For the Enface electrolyte, copper deposition has been carried out without any acid, and with different concentrations of additives between 17%-200% of those recommended by suppliers. 25 μm of metal has been plated on stainless steel coupons as suggested by ASTM, peeled off and subjected to ductility and resistance measurements. Scanning electron microscopy and electron back scatter diffraction have been carried out to determine the deposit morphology. It was found that copper deposits obtained from acid-free solutions containing low concentration of metal ion and additives produced copper deposits with properties which are comparable to those obtained from standard electrolytes. The optimum additive concentration for the EnFACE electrolyte was 50% of the supplier recommended value

    No peaks without valleys: The stable mass transfer channel for gravitational-wave sources in light of the neutron star-black hole mass gap

    Full text link
    Gravitational-wave (GW) detections are starting to reveal features in the mass distribution of double compact objects. The lower end of the black hole (BH) mass distribution is especially interesting as few formation channels contribute here and because it is more robust against variations in the cosmic star formation than the high mass end. In this work we explore the stable mass transfer channel for the formation of GW sources with a focus on the low-mass end of the mass distribution. We conduct an extensive exploration of the uncertain physical processes that impact this channel. We note that, for fiducial assumptions, this channel reproduces the peak at 9M\sim9 \mathrm{M_{\odot}} in the GW-observed binary BH mass distribution remarkably well, and predicts a cutoff mass that coincides with the upper edge of the purported neutron star BH mass gap. The peak and cutoff mass are a consequence of unique properties of this channel, namely (1) the requirement of stability during the mass transfer phases, and (2) the complex way in which the final compact object masses scale with the initial mass. We provide an analytical expression for the cutoff in the primary component mass and show that this adequately matches our numerical results. Our results imply that selection effects resulting from the formation channel alone can provide an explanation for the purported neutron star--BH mass gap in GW detections. This provides an alternative to the commonly adopted view that the gap emerges during BH formation.Comment: Accepted for publication in ApJ associated code is available at https://github.com/LiekeVanSon/LowMBH_and_StableChanne

    Optimal Packings of Superballs

    Full text link
    Dense hard-particle packings are intimately related to the structure of low-temperature phases of matter and are useful models of heterogeneous materials and granular media. Most studies of the densest packings in three dimensions have considered spherical shapes, and it is only more recently that nonspherical shapes (e.g., ellipsoids) have been investigated. Superballs (whose shapes are defined by |x1|^2p + |x2|^2p + |x3|^2p <= 1) provide a versatile family of convex particles (p >= 0.5) with both cubic- and octahedral-like shapes as well as concave particles (0 < p < 0.5) with octahedral-like shapes. In this paper, we provide analytical constructions for the densest known superball packings for all convex and concave cases. The candidate maximally dense packings are certain families of Bravais lattice packings. The maximal packing density as a function of p is nonanalytic at the sphere-point (p = 1) and increases dramatically as p moves away from unity. The packing characteristics determined by the broken rotational symmetry of superballs are similar to but richer than their two-dimensional "superdisk" counterparts, and are distinctly different from that of ellipsoid packings. Our candidate optimal superball packings provide a starting point to quantify the equilibrium phase behavior of superball systems, which should deepen our understanding of the statistical thermodynamics of nonspherical-particle systems.Comment: 28 pages, 16 figure

    'Surely the most natural scenario in the world’: Representations of ‘Family’ in BBC Pre-school Television

    Get PDF
    Historically, the majority of work on British children’s television has adopted either an institutional or an audience focus, with the texts themselves often overlooked. This neglect has meant that questions of representation in British children’s television – including issues such as family, gender, class or ethnicity - have been infrequently analysed in the UK context. In this article, we adopt a primarily qualitative methodology and analyse the various textual manifestations of ‘family’, group, or community as represented in a selected number of BBC pre-school programmes. In doing so, we question the (limited amount of) international work that has examined representations of the family in children’s television, and argue that nuclear family structures do not predominate in this sphere

    Increased plasma thioredoxin levels in patients with sepsis: positive association with macrophage migration inhibitory factor.

    Get PDF
    PURPOSE: To establish the relationship between plasma levels of thioredoxin (Trx) and macrophage migration inhibitory factor (MIF) in systemic inflammatory stress syndrome (SIRS)/sepsis. METHODS: Enzyme-linked immunosorbent assay measurements of Trx, MIF, IL-6, -8, and -10 and enzyme-linked fluorescent assay determination of procalcitonin (PCT) in plasma from patients with SIRS/sepsis, neutropenic sepsis, healthy volunteers and pre-oesophagectomy patients. RESULTS: Thioredoxin was significantly higher in SIRS/sepsis patients [101.3 ng ml(−1), interquartile range (IQR) 68.7–155.6, n = 32] compared with that in healthy controls (49.5 ng ml(−1), IQR 31.4–71.1, P < 0.001, n = 17) or pre-oesophagectomy patients (40.5 ng ml(−1), IQR 36.9–63.2, P < 0.01, n = 7), but was not raised in neutropenics (n = 5). MIF levels were also significantly higher in SIRS/sepsis patients (12.1 ng ml(−1), IQR 9.5–15.5, n = 35), but not in the neutropenic group, when compared with healthy controls (9.3 ng ml(−1), IQR 7.3–10.7, P < 0.01, n = 20). Trx levels correlated, positively, with MIF levels and APACHE II scores. Plasma levels of IL-6, -8 and -10 and PCT increased significantly in patients with SIRS/sepsis (P < 0.001) and with neutropenic sepsis, but did not correlate with Trx or MIF levels. CONCLUSION: Plasma levels of Trx, MIF, IL-6, -8, -10 and PCT were raised in patients with SIRS/sepsis. Comparisons between mediators suggest a unique correlation of Trx with MIF. Moreover, Trx and MIF differed from cytokines and PCT in that levels were significantly lower in patients with neutropenia compared with the main SIRS/sepsis group. By contrast, IL-8 and PCT levels were significantly greater in the neutropenic patient group. The link between MIF and Trx highlighted in this study has implications for future investigations into the pathogenesis of SIRS/sepsis

    A Viscoelastic model of phase separation

    Full text link
    We show here a general model of phase separation in isotropic condensed matter, namely, a viscoelastic model. We propose that the bulk mechanical relaxation modulus that has so far been ignored in previous theories plays an important role in viscoelastic phase separation in addition to the shear relaxation modulus. In polymer solutions, for example, attractive interactions between polymers under a poor-solvent condition likely cause the transient gellike behavior, which makes both bulk and shear modes active. Although such attractive interactions between molecules of the same component exist universally in the two-phase region of a mixture, the stress arising from attractive interactions is asymmetrically divided between the components only in dynamically asymmetric mixtures such as polymer solutions and colloidal suspensions. Thus, the interaction network between the slower components, which can store the elastic energy against its deformation through bulk and shear moduli, is formed. It is the bulk relaxation modulus associated with this interaction network that is primarily responsible for the appearance of the sponge structure peculiar to viscoelastic phase separation and the phase inversion. We demonstrate that a viscoelastic model of phase separation including this new effect is a general model that can describe all types of isotropic phase separation including solid and fluid models as its special cases without any exception, if there is no coupling with additional order parameter. The physical origin of volume shrinking behavior during viscoelastic phase separation and the universality of the resulting spongelike structure are also discussed.Comment: 14 pages, RevTex, To appear in Phys. Rev
    corecore