36 research outputs found

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    The Murchison Widefield Array Transients Survey (MWATS). A search for low-frequency variability in a bright Southern hemisphere sample

    Get PDF
    We report on a search for low-frequency radio variability in 944 bright (>4 Jy at 154 MHz) unresolved, extragalactic radio sources monitored monthly for several years with the Murchison Widefield Array. In the majority of sources, we find very low levels of variability with typical modulation indices 2.8 yr) with time-averaged modulation indices M¯¯¯¯¯=3.1−7.1M¯=3.1−7.1 per cent. With 7/15 of these variable sources having peaked spectral energy distributions, and only 5.7 per cent of the overall sample having peaked spectra, we find an increase in the prevalence of variability in this spectral class. We conclude that the variability seen in this survey is most probably a consequence of refractive interstellar scintillation and that these objects must have the majority of their flux density contained within angular diameters less than 50 milliarcsec (which we support with multiwavelength data). At 154 MHz, we demonstrate that interstellar scintillation time-scales become long (∼decades) and have low modulation indices, while synchrotron-driven variability can only produce dynamic changes on time-scales of hundreds of years, with flux density changes less than one milli-jansky (without relativistic boosting). From this work, we infer that the low-frequency extragalactic southern sky, as seen by SKA-Low, will be non-variable on time-scales shorter than 1 yr

    Searching for dark matter signals from local dwarf spheroidal galaxies at low radio frequencies in the GLEAM survey

    Full text link
    © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society The search for emission from weakly interacting massive particle (WIMP) dark matter annihilation and decay has become a multipronged area of research not only targeting a diverse selection of astrophysical objects, but also taking advantage of the entire electromagnetic spectrum. The decay of WIMP particles into standard model particles has been suggested as a possible channel for synchrotron emission to be detected at low radio frequencies. Here, we present the stacking analysis of a sample of 33 dwarf spheroidal (dSph) galaxies with low-frequency (72-231 MHz) radio images from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. We produce radial surface brightness profiles of images centred upon each dSph galaxy with background radio sources masked. We remove 10 fields from the stacking due to contamination from either poorly subtracted, bright radio sources or strong background gradients across the field. The remaining 23 dSph galaxies are stacked in an attempt to obtain a statistical detection of any WIMP-induced synchrotron emission in these systems. We find that the stacked radial brightness profile does not exhibit a statistically significant detection above the 95 per cent confidence level of ∼1.5 mJy beam−1. This novel technique shows the potential of using low-frequency radio images to constrain fundamental properties of particle dark matter

    Murchison Widefield Array and XMM-Newton observations of the Galactic supernova remnant G5.9+3.1

    Full text link
    Aims. In this paper we discuss the radio continuum and X-ray properties of the so-far poorly studied Galactic supernova remnant (SNR) G5.9 + 3.1. Methods. We present the radio spectral energy distribution (SED) of the Galactic SNR G5.9 + 3.1 obtained with the Murchison Widefield Array (MWA). Combining these new observations with the surveys at other radio continuum frequencies, we discuss the integrated radio continuum spectrum of this particular remnant. We have also analyzed an archival XMM-Newton observation, which represents the first detection of X-ray emission from this remnant. Results. The SNR SED is very well explained by a simple power-law relation. The synchrotron radio spectral index of G5.9 + 3.1 is estimated to be 0.42 ± 0.03 and the integrated flux density at 1 GHz to be around 2.7 Jy. Furthermore, we propose that the identified point radio source, located centrally inside the SNR shell, is most probably a compact remnant of the supernova explosion. The shell-like X-ray morphology of G5.9 + 3.1 as revealed by XMM-Newton broadly matches the spatial distribution of the radio emission, where the radio-bright eastern and western rims are also readily detected in the X-ray while the radio-weak northern and southern rims are weak or absent in the X-ray. Extracted MOS1+MOS2+PN spectra from the whole SNR as well as the north, east, and west rims of the SNR are fit successfully with an optically thin thermal plasma model in collisional ionization equilibrium with a column density NH ~ 0.80 × 1022 cm−2 and fitted temperatures spanning the range kT ~ 0.14–0.23 keV for all of the regions. The derived electron number densities ne for the whole SNR and the rims are also roughly comparable (ranging from ~0.20f−1∕2 to ~0.40f−1∕2 cm−3, where f is the volume filling factor). We also estimate the swept-up mass of the X-ray emitting plasma associated with G5.9+3.1 to be ~46f−1∕2 M⊙.</jats:p

    The LOFAR Two-metre Sky Survey V. Second data release

    Get PDF
    In this data release from the ongoing LOw-Frequency ARray (LOFAR) Two-metre Sky Survey we present 120a 168 MHz images covering 27% of the northern sky. Our coverage is split into two regions centred at approximately 12h45m +44 30a and 1h00m +28 00a and spanning 4178 and 1457 square degrees respectively. The images were derived from 3451 h (7.6 PB) of LOFAR High Band Antenna data which were corrected for the direction-independent instrumental properties as well as direction-dependent ionospheric distortions during extensive, but fully automated, data processing. A catalogue of 4 396 228 radio sources is derived from our total intensity (Stokes I) maps, where the majority of these have never been detected at radio wavelengths before. At 6a resolution, our full bandwidth Stokes I continuum maps with a central frequency of 144 MHz have: a median rms sensitivity of 83 μJy beama 1; a flux density scale accuracy of approximately 10%; an astrometric accuracy of 0.2a; and we estimate the point-source completeness to be 90% at a peak brightness of 0.8 mJy beama 1. By creating three 16 MHz bandwidth images across the band we are able to measure the in-band spectral index of many sources, albeit with an error on the derived spectral index of > a ±a 0.2 which is a consequence of our flux-density scale accuracy and small fractional bandwidth. Our circular polarisation (Stokes V) 20a resolution 120a168 MHz continuum images have a median rms sensitivity of 95 μJy beama 1, and we estimate a Stokes I to Stokes V leakage of 0.056%. Our linear polarisation (Stokes Q and Stokes U) image cubes consist of 480a A a 97.6 kHz wide planes and have a median rms sensitivity per plane of 10.8 mJy beama 1 at 4a and 2.2 mJy beama 1 at 20a; we estimate the Stokes I to Stokes Q/U leakage to be approximately 0.2%. Here we characterise and publicly release our Stokes I, Q, U and V images in addition to the calibrated uv-data to facilitate the thorough scientific exploitation of this unique dataset

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation

    An ASKAP survey for H I absorption towards dust-obscured quasars

    No full text
    Obscuration of quasars by accreted gas and dust, or dusty intervening galaxies, can cause active galactic nuclei (AGN) to be missed in optically selected surveys. Radio observations can overcome this dust bias. In particular, radio surveys searching for H I absorption inform us on how the AGN can impact on the cold neutral gas medium within the host galaxy, or the population of intervening galaxies through the observed line of sight gas kinematics. We present the results of an H I absorption line survey at 0.4 &lt; z &lt; 1 towards 34 obscured quasars with the Australian SKA Pathfinder (ASKAP) commissioning array. We detect three H I absorption lines, with one of these systems previously unknown. Through optical follow-up for two sources, we find that in all detections the H I gas is associated with the AGN, and hence that these AGN are obscured by material within their host galaxies. Most of our sample are compact, and in addition, are either gigahertz peaked spectrum (GPS), or steep spectrum (CSS) sources, both thought to represent young or recently re-triggered radio AGN. The radio spectral energy distribution classifications for our sample agree with galaxy evolution models in which the obscured AGN has only recently become active. Our associated H I detection rate for GPS and compact SS sources matches those of other surveys towards such sources. We also find shallow and asymmetric H I absorption features, which agrees with previous findings that the cold neutral medium in compact radio galaxies is typically kinematically disturbed by the AGN

    Spectral variability of radio sources at low frequencies

    Get PDF
    Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral variability for a large population of extragalactic radio sources are now possible. Using two epochs of observations from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey that were taken one year apart, we search for spectral variability across 100-230 MHz for 21 558 sources. We present methodologies for detecting variability in the spectrum between epochs and for classifying the type of variability: either as a change in spectral shape or as a uniform change in flux density across the bandwidth. We identify 323 sources with significant spectral variability over a year-long time-scale. Of the 323 variable sources, we classify 51 of these as showing a significant change in spectral shape. Variability is more prevalent in peaked-spectrum sources, analogous to gigahertz-peaked spectrum and compact steep-spectrum sources, compared to typical radio galaxies. We discuss the viability of several potential explanations of the observed spectral variability, such as interstellar scintillation and jet evolution. Our results suggest that the radio sky in the megahertz regime is more dynamic than previously suggested

    Searching for dark matter signals from local dwarf spheroidal galaxies at low radio frequencies in the GLEAM survey

    No full text
    ABSTRACT The search for emission from weakly interacting massive particle (WIMP) dark matter annihilation and decay has become a multipronged area of research not only targeting a diverse selection of astrophysical objects, but also taking advantage of the entire electromagnetic spectrum. The decay of WIMP particles into standard model particles has been suggested as a possible channel for synchrotron emission to be detected at low radio frequencies. Here, we present the stacking analysis of a sample of 33 dwarf spheroidal (dSph) galaxies with low-frequency (72–231 MHz) radio images from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. We produce radial surface brightness profiles of images centred upon each dSph galaxy with background radio sources masked. We remove 10 fields from the stacking due to contamination from either poorly subtracted, bright radio sources or strong background gradients across the field. The remaining 23 dSph galaxies are stacked in an attempt to obtain a statistical detection of any WIMP-induced synchrotron emission in these systems. We find that the stacked radial brightness profile does not exhibit a statistically significant detection above the 95 per cent confidence level of ∼1.5 mJy beam−1. This novel technique shows the potential of using low-frequency radio images to constrain fundamental properties of particle dark matter
    corecore