82 research outputs found

    Establishing the baseline level of repetitive element expression in the human cortex

    Get PDF
    Background: Although nearly half of the human genome is comprised of repetitive sequences, the expression profile of these elements remains largely uncharacterized. Recently developed high throughput sequencing technologies provide us with a powerful new set of tools to study repeat elements. Hence, we performed whole transcriptome sequencing to investigate the expression of repetitive elements in human frontal cortex using postmortem tissue obtained from the Stanley Medical Research Institute. Results: We found a significant amount of reads from the human frontal cortex originate from repeat elements. We also noticed that Alu elements were expressed at levels higher than expected by random or background transcription. In contrast, L1 elements were expressed at lower than expected amounts. Conclusions: Repetitive elements are expressed abundantly in the human brain. This expression pattern appears to be element specific and can not be explained by random or background transcription. These results demonstrate that our knowledge about repetitive elements is far from complete. Further characterization is required to determine the mechanism, the control, and the effects of repeat element expression

    Hydrodilatation, corticosteroids and adhesive capsulitis: A randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrodilatation of the glenohumeral joint is by several authors reported to improve shoulder pain and range of motion for patients with adhesive capsulitis. Procedures described often involve the injection of corticosteroids, to which the reported treatment effects may be attributed. Any important contribution arising from the hydrodilatation procedure itself remains to be demonstrated.</p> <p>Methods</p> <p>In this randomized trial, a hydrodilatation procedure including corticosteroids was compared with the injection of corticosteroids without dilatation. Patients were given three injections with two-week intervals, and all injections were given under fluoroscopic guidance. Outcome measures were the Shoulder Pain and Disability Index (SPADI) and measures of active and passive range of motion. Seventy-six patients were included and groups were compared six weeks after treatment. The study was designed as an open trial.</p> <p>Results</p> <p>The groups showed a rather similar degree of improvement from baseline. According to a multiple regression analysis, the effect of dilatation was a mean improvement of 3 points (confidence interval: -5 to 11) on the SPADI 0–100 scale. T-tests did not demonstrate any significant between-group differences in range of motion.</p> <p>Conclusion</p> <p>This study did not identify any important treatment effects resulting from three hydrodilatations that included steroid compared with three steroid injections alone.</p> <p>Trial registration</p> <p>The study is registered in Current Controlled Trials with the registration number ISRCTN90567697.</p

    The Influence of Meteorology on the Spread of Influenza: Survival Analysis of an Equine Influenza (A/H3N8) Outbreak

    Get PDF
    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20–25°C. Wind speeds >30 km hour−1 from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions

    The impact of new research technologies on our understanding of environmental causes of disease: the concept of clinical vulnerability

    Get PDF
    In spite of decades of epidemiological research, the etiology and causal patterns for many common diseases, such as breast and colon cancer or neurodegenerative diseases, are still largely unknown. Such chronic diseases are likely to have an environmental origin. However, "environmental" risks have been often elusive in epidemiological studies. This is a conundrum for current epidemiological research. On the other side, the relative contribution of genes to chronic diseases, as emerging from GWAS, seems to be modest (15-50% increase in disease risk). What is yet to be explored extensively is a model of disease based on long-term effects of low doses of environmental exposures, incorporating both genetic and acquired susceptibility ("clinical vulnerability"), and the cumulative effects of different exposures. Such a disease model would be compatible with the weak associations found by GWAS and the still elusive role of many (low-level) environmental exposures. We also propose that the introduction of "-omic" high-throughput technologies, such as transcriptomics, proteomics and metabolomics, may provide, in the next years, powerful tools to investigate early effects of environmental exposures and understand the etiology of common diseases better, according to the "clinical vulnerability model". The development of "-omics", in spite of current limitations and lack of sound validation, could greatly contribute to the elucidation of the disease model we propose

    Epigenetic regulation of caloric restriction in aging

    Get PDF
    The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases
    corecore