266 research outputs found

    Abyssal Circulation Driven By Near-Boundary Mixing: Water Mass Transformations and Interior Stratification

    Get PDF
    The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories

    Abyssal circulation driven by near-boundary mixing: water mass transformations and interior stratification

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8),(2020): 2203-2226, doi:10.1175/JPO-D-19-0313.1.The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories.We acknowledge funding support from National Science Foundation Awards 6932401 and 6936732

    Abyssal Circulation Driven By Near-Boundary Mixing: Water Mass Transformations and Interior Stratification

    Get PDF
    The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories

    Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system

    Get PDF
    The German Bight was exposed to record high riverine discharges in June 2013, as a result of flooding of the Elbe and Weser rivers. Several anomalous observations suggested that the hydrodynamical and biogeochemical states of the system were impacted by this event. In this study, we developed a biogeochemical model and coupled it with a previously introduced high-resolution hydrodynamical model of the southern North Sea in order to better characterize these impacts and gain insight into the underlying processes. Performance of the model was assessed using an extensive set of in situ measurements for the period 2011–2014. We first improved the realism of the hydrodynamic model with regard to the representation of cross-shore gradients, mainly through inclusion of flow-dependent horizontal mixing. Among other characteristic features of the system, the coupled model system can reproduce the low salinities, high nutrient concentrations and low oxygen concentrations in the bottom layers observed within the German Bight following the flood event. Through a scenario analysis, we examined the sensitivity of the patterns observed during July 2013 to the hydrological and meteorological forcing in isolation. Within the region of freshwater influence (ROFI) of the Elbe–Weser rivers, the flood event clearly dominated the changes in salinity and nutrient concentrations, as expected. However, our findings point to the relevance of the peculiarities in the meteorological conditions in 2013 as well: a combination of low wind speeds, warm air temperatures and cold bottom-water temperatures resulted in a strong thermal stratification in the outer regions and limited vertical nutrient transport to the surface layers. Within the central region, the thermal and haline dynamics interactively resulted in an intense density stratification. This intense stratification, in turn, led to enhanced primary production within the central region enriched by nutrients due to the flood but led to reduction within the nutrient-limited outer region, and it caused a widespread oxygen depletion in bottom waters. Our results further point to the enhancement of the current velocities at the surface as a result of haline stratification and to intensification of the thermohaline estuarine-like circulation in the Wadden Sea, both driven by the flood event

    Observing the Earth as an exoplanet with LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth

    Full text link
    The detections of small, rocky exoplanets have surged in recent years and will likely continue to do so. To know whether a rocky exoplanet is habitable, we have to characterise its atmosphere and surface. A promising characterisation method for rocky exoplanets is direct detection using spectropolarimetry. This method will be based on single pixel signals, because spatially resolving exoplanets is impossible with current and near-future instruments. Well-tested retrieval algorithms are essential to interpret these single pixel signals in terms of atmospheric composition, cloud and surface coverage. Observations of Earth itself provide the obvious benchmark data for testing such algorithms. The observations should provide signals that are integrated over the Earth's disk, that capture day and night variations, and all phase angles. The Moon is a unique platform from where the Earth can be observed as an exoplanet, undisturbed, all of the time. Here, we present LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth, a small and robust spectropolarimeter to observe our Earth as an exoplanet.Comment: 14 pages, 3 figures, submitted in special Issue of Planetary and Space Science on Scientific Preparations for Lunar Exploratio

    Dynamics of eddying abyssal mixing layers over sloping rough topography

    Full text link
    The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed watermass transformations are dominated by rough topography “hotspots”, where the bottom-enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger up-welling in a thin Bottom Boundary Layer (BBL). These watermass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downwards diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model which approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the non-local coupling to the basin-scale circulation.First author draf

    Acute perioperative-stress-induced increase of atherosclerotic plaque volume and vulnerability to rupture in apolipoprotein-E-deficient mice is amenable to statin treatment and IL-6 inhibition

    Get PDF
    Myocardial infarction and stroke are frequent after surgical procedures and consume a considerable amount of benefit of surgical therapy. Perioperative stress, induced by surgery, is composed of hemodynamic and inflammatory reactions. The effects of perioperative stress on atherosclerotic plaques are ill-defined. Murine models to investigate the influence of perioperative stress on plaque stability and rupture are not available. We developed a model to investigate the influence of perioperative stress on plaque growth and stability by exposing apolipoprotein-E-deficient mice, fed a high cholesterol diet for 7 weeks, to a double hit consisting of 30 min of laparotomy combined with a substantial blood loss (approximately 20% of total blood volume; 400 µl). The innominate artery was harvested 72 h after the intervention. Control groups were sham and baseline controls. Interleukin-6 (IL-6) and serum amyloid A (SAA) plasma levels were determined. Plaque load, vascular smooth muscle cell (VSMC) and macrophage content were quantified. Plaque stability was assessed using the Stary score and frequency of signs of plaque rupture were assessed. High-dose atorvastatin (80 mg/kg body weight/day) was administered for 6 days starting 3 days prior to the double hit. A single dose of an IL-6-neutralizing antibody or the fusion protein gp130-Fc selectively targeting IL-6 trans-signaling was subcutaneously injected. IL-6 plasma levels increased, peaking at 6 h after the intervention. SAA levels peaked at 24 h (n=4, P<0.01). Plaque volume increased significantly with the double hit compared to sham (n=8, P<0.01). More plaques were scored as complex or bearing signs of rupture after the double hit compared to sham (n=5-8, P<0.05). Relative VSMC and macrophage content remained unchanged. IL-6-inhibition or atorvastatin, but not blocking of IL-6 trans-signaling, significantly decreased plaque volume and complexity (n=8, P<0.01). Using this model, researchers will be able to further investigate the pathophysiology of perioperative plaque stability, which can result in myocardial infarction, and, additionally, to test potential protective strategies

    Fiber-Optic Observations of Internal Waves and Tides

    Get PDF
    13 pages, 5 figures, supporting information https://doi.org/10.1029/2023JC019980.-- Data Availability Statement: All 4.5 days of DAS data from the Strait of Gibraltar necessary to reproduce Figure 2 and the 3 days of DAS data from Gran Canaria necessary to reproduce Figures 3 and 4 are available through the CaltechDATA repository (Williams et al., 2023). Figures were produced using GMT6 (Wessel et al., 2019)Although typically used to measure dynamic strain from seismic and acoustic waves, Rayleigh-based distributed acoustic sensing (DAS) is also sensitive to temperature, offering longer range and higher sensitivity to small temperature perturbations than conventional Raman-based distributed temperature sensing. Here, we demonstrate that ocean-bottom DAS can be employed to study internal wave and tide dynamics in the bottom boundary layer, a region of enhanced ocean mixing but scarce observations. First, we show temperature transients up to about 4 K from a power cable in the Strait of Gibraltar south of Spain, associated with passing trains of internal solitary waves in water depth <200 m. Second, we show the propagation of thermal fronts associated with the nonlinear internal tide on the near-critical slope of the island of Gran Canaria, off the coast of West Africa, with perturbations up to about 2 K at 1-km depth and 0.2 K at 2.5-km depth. With spatial averaging, we also recover a signal proportional to the barotropic tidal pressure, including the lunar fortnightly variation. In addition to applications in observational physical oceanography, our results suggest that contemporary chirped-pulse DAS possesses sufficient long-period sensitivity for seafloor geodesy and tsunami monitoring if ocean temperature variations can be separated.Funding for this project was provided through the “Severo Ochoa Centre of Excellence” accreditation (CEX2019-000928-S), the Spanish MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR Program under projects PSI ref. PLEC2021-007875 and TREMORS ref. CPP2021-008869, the Spanish MCIN/AEI/10.13039/501100011033 and FEDER Program under projects PID2021-128000OB-C21 and PID2021-128000OB-C22, and the European Innovation Council under Grant SAFE: ref. 101098992. E. F. W. was supported by a National Science Foundation Graduate Research Fellowship. M.C. was funded by the European Union (HORIZON-MSCA-2021-PF MOORING, grant agreement no. 101064423). M. R. F.-R. and H. F. M. acknowledge support from the MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR under Grants RYC2021-032167-I and RYC2021-035009-I, respectively. J. C. acknowledges support from the National Science Foundation (Grant OCE-2023161). K. B. W. acknowledges funding provided by the National Science Foundation (Grants OCE-2045399 and OCE-185076) and the U.S. Office of Naval Research (Grant N00014-18-1-2803). Z. Z. acknowledges support from the Moore Foundation and NSF under CAREER Award 1848166Peer reviewe

    Wissenschaftliche Monitoringkonzepte fĂĽr die Deutsche Bucht (WIMO) - Abschlussbericht

    Get PDF
    The state and development of coastal marine systems and an understanding of the interaction of organisms, sea floor, water column, and biochemical and physical processes can only be obtained by a combination of long-term monitoring and modelling approaches of different complexity. A need for the development and evaluation of monitoring strategies is driven by a framework of different European and German regulations. The research project WIMO (Scientific Monitoring Concepts for the German Bight) has developed concepts and methods that aim at a fundamental scientific understanding of marine systems and also meet monitoring requirements of European legislation and regulations like the EU Marine Strategy Framework Directive. In this final report examples of common descriptors of ecosystem state like seabed integrity, eutrophication, and biodiversity are discussed. It has been assessed to what extent established measuring procedures used to survey the characteristics of the sea floor, and newly developed technologies are eligible for governmental monitoring. The significance of integrative modelling for linking and visualising results of measurements and models is illustrated. It is shown how new concepts have been implemented into governmental monitoring in the form of web based data sheets. These insights enable continuous analyses and developments in the future
    • …
    corecore