96 research outputs found

    NKCC1 downregulation induces hyperpolarizing shift of GABA responsiveness at near term fetal stages in rat cultured dorsal root ganglion neurons

    Get PDF
    GABA A receptor-mediated neurotransmission is greatly influenced by cation-chloride cotransporter activity during developmental stages. In embryonic neurons Na–K–2Cl (NKCC1) cotransporters mediate active chloride uptake, thus increasing the intracellular chloride concentration associated with GABA-induced depolarization. At fetal stages near term, oxytocin-induced NKCC1 downregulation has been implicated in the developmental shift from depolarizing to hyperpolarizing GABA action. Mature dorsal root ganglion neurons (DRGN), however, express high NKCC1 levels and maintain high intracellular chloride levels with consequent GABA-induced depolarization.Results: Gramicidin-perforated patch-clamp recordings were used to assess the developmental change in chloride homeostasis in rat cultured small DRGN at the embryonic day 16 (E16) and 19 (E19). The results were compared to data previously obtained in fetal DRGN at E14 and in mature cells. A significant NKCC1 downregulation, leading to reduction in excitatory GABAergic transmission, was observed at E16 and E19.Conclusion: These results indicate that NKCC1 activity transiently decreases in DRGN at fetal stages near term. This developmental shift in GABAergic transmission may contribute to fetal analgesia and neuroprotection at birth

    Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Fusarium </it>head blight is a very important disease of small grain cereals with <it>F. graminearum </it>as one of the most important causal agents. It not only causes reduction in yield and quality but from a human and animal healthcare point of view, it produces mycotoxins such as deoxynivalenol (DON) which can accumulate to toxic levels. Little is known about external triggers influencing DON production.</p> <p>Results</p> <p>In the present work, a combined <it>in vivo/in vitro </it>approach was used to test the effect of sub lethal fungicide treatments on DON production. Using a dilution series of prothioconazole, azoxystrobin and prothioconazole + fluoxastrobin, we demonstrated that sub lethal doses of prothioconazole coincide with an increase in DON production 48 h after fungicide treatment. In an artificial infection trial using wheat plants, the <it>in vitro </it>results of increased DON levels upon sub lethal prothioconazole application were confirmed illustrating the significance of these results from a practical point of view. In addition, further <it>in vitro </it>experiments revealed a timely hyperinduction of H<sub>2</sub>O<sub>2 </sub>production as fast as 4 h after amending cultures with prothioconazole. When applying H<sub>2</sub>O<sub>2 </sub>directly to germinating conidia, a similar induction of DON-production by <it>F. graminearum </it>was observed. The effect of sub lethal prothioconazole concentrations on DON production completely disappeared when applying catalase together with the fungicide.</p> <p>Conclusions</p> <p>These cumulative results suggest that H<sub>2</sub>O<sub>2 </sub>induced by sub lethal doses of the triazole fungicide prothioconazole acts as a trigger of DON biosynthesis. In a broader framework, this work clearly shows that DON production by the plant pathogen <it>F. graminearum </it>is the result of the interaction of fungal genomics and external environmental triggers.</p

    A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells

    Get PDF
    Microelectrode arrays (MEAs) have proved to be useful tools for characterizing electrically active cells such as cardiomyocytes and neurons. While there exist a number of integrated electronic chips for recording from small populations or even single cells, they rely primarily on the interface between the cells and 2D flat electrodes. Here, an approach that utilizes residual stress‐based self‐folding to create individually addressable multielectrode interfaces that wrap around the cell in 3D and function as an electrical shell‐like recording device is described. These devices are optically transparent, allowing for simultaneous fluorescence imaging. Cell viability is maintained during and after electrode wrapping around the cel and chemicals can diffuse into and out of the self‐folding devices. It is further shown that 3D spatiotemporal recordings are possible and that the action potentials recorded from cultured neonatal rat ventricular cardiomyocytes display significantly higher signal‐to‐noise ratios in comparison with signals recorded with planar extracellular electrodes. It is anticipated that this device can provide the foundation for the development of new‐generation MEAs where dynamic electrode–cell interfacing and recording substitutes the traditional method using static electrodes

    Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopaty

    Get PDF
    The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer’s disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer’s disease

    Deficiency in apoptotic effectors bax and bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum

    No full text
    Efficient exploitation of cell death mechanisms for therapeutic purpose requires the identification of the molecular events committing cancer cells to death and the intracellular elements of the pro-death and pro-survival machinery activated in response to the anticancer therapy. Photodynamic therapy (PDT) is a paradigm of anticancer therapy utilizing the generation of reactive oxygen species to kill the cancer cells. In this study we have identified the photodamage to the sarco(endo)plasmic-reticulum Ca(2+)-ATPase (SERCA) pump and consequent loss in the ER-Ca(2+) homeostasis as the most apical molecular events leading to cell death in hypericin-photosensitized cells. Downstream of the ER-Ca(2+) emptying, both caspase-dependent and -independent pathways are activated to ensure cell demise. The induction of apoptosis as a cell death modality is dependent on the availability of proapopototic Bax and Bak proteins, which are essential effectors of the mitochondrial outer membrane permeabilization (MOMP) and subsequent caspase activation. In Bax(-/-)/Bak(-/-) cells a nonapoptotic pathway dependent on sustained autophagy commits the oxidatively damaged cells to death. These results argue that the decision to die in this paradigm of oxidative stress is taken upstream of Bax-dependent MOMP and that the irreversible photodamage to the ER induced by hypericin-PDT acts as a trigger for an autophagic cell death pathway in apoptosis-deficient cells.status: publishe

    The suppressor domain of inositol 1,4,5-trisphosphate receptor plays an essential role in the protection against apoptosis

    No full text
    The N-terminal 1-225 amino acids (aa) of the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) function as a suppressor/coupling domain. In this study we used IP(3)R-deficient B-lymphocytes to investigate the effects of modifications in this domain on IP(3) binding and Ca(2+)-release activity. Although the N-terminal 1-225 aa of IP(3)R3 had the same role as in IP(3)R1, the suppression of IP(3) binding for IP(3)R1 was lost when the suppressor/coupling domains were exchanged between the two isoforms. Resulting chimeric receptors showed a higher sensitivity to IP(3)-induced activation (IICR). Deletion of 11 aa in IP(3)R1 ([Delta76-86]-IP(3)R1) or replacing aa 76-86 of the IP(3)R1 in the suppressor/coupling domain by 13 aa of IP(3)R3 ([75-87 T3]-IP(3)R1) also resulted in increased IP(3) binding and sensitivity of IICR. These residues constitute the only part of the suppressor/coupling domain that is strikingly different between the two isoforms. Expression of [Delta76-86]-IP(3)R1 and of [75-87 T3]-IP(3)R1 increased the propensity of cells to undergo staurosporine-induced apoptosis, but had no effect on the Ca(2+) content in the endoplasmic reticulum. In the cell model used, our observations suggest that the sensitivity of the Ca(2+)-release activity of IP(3)R1 to IP(3) influences the sensitivity of the cells to apoptotic stimuli and that the suppressor/coupling domain may have an anti-apoptotic function by attenuating the sensitivity of IICR.status: publishe

    Suramin and disulfonated stilbene derivatives stimulate the Ca2+-induced Ca2+ -release mechanism in A7r5 cells

    No full text
    We have described previously a novel Ca2+-induced Ca2+-release (CICR) mechanism in permeabilized A7r5 cells (embryonic rat aorta) and 16HBE14o-cells (human bronchial mucosa) cells (J Biol Chem 278:27548-27555, 2003). This CICR mechanism was activated upon the elevation of the free cytosolic calcium concentration [Ca2+]c and was not inhibited by pharmacological inhibitors of the inositol-1,4,5-trisphosphate (IP3) receptor nor of the ryanodine receptor. This CICR mechanism was inhibited by calmodulin (CaM)1234, a Ca2+-insensitive CaM mutant, and by different members of the superfamily of CaM-like Ca2+-binding proteins. Here, we present evidence that the CICR mechanism that is expressed in A7r5 and 16HBE14o-cells is strongly activated by suramin and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). We found several indications that both activation mechanisms are indeed two different modes of the same release system. Suramin/DIDS-induced Ca2+ release was only detected in cells that displayed the CICR mechanism, and cell types that do not express this type of CICR mechanism did not exhibit suramin/DIDS-induced Ca2+ release. Furthermore, we show that the suramin-stimulated Ca2+ release is regulated by Ca2+ and CaM in a similar way as the previously described CICR mechanism. The pharmacological characterization of the suramin/DIDS-induced Ca2+ release further confirms its properties as a novel CaM-regulated Ca2+-release mechanism. We also investigated the effects of disulfonated stilbene derivatives on IP3-induced Ca2+ release and found, in contrast to the effect on CICR, a strong inhibition by DIDS and 4'-acetoamido-4'-isothiocyanostilbene-2',2'-disulfonic acid.status: publishe

    The conserved sites for the FK506-binding proteins in ryanodine receptors and inositol 1,4,5-trisphosphate receptors are structurally and functionally different

    Get PDF
    7sireservedWe compared the interaction of the FK506-binding protein (FKBP) with the type 3 ryanodine receptor (RyR3) and with the type 1 and type 3 inositol 1,4,5-trisphosphate receptor (IP(3)R1 and IP(3)R3), using a quantitative GST-FKBP12 and GST-FKBP12.6 affinity assay. We first characterized and mapped the interaction of the FKBPs with the RyR3. GST-FKBP12 as well as GST-FKBP12.6 were able to bind approximately 30% of the solubilized RyR3. The interaction was completely abolished by FK506, strengthened by the addition of Mg(2+), and weakened in the absence of Ca(2+) but was not affected by the addition of cyclic ADP-ribose. By using proteolytic mapping and site-directed mutagenesis, we pinpointed Val(2322), located in the central modulatory domain of the RyR3, as a critical residue for the interaction of RyR3 with FKBPs. Substitution of Val(2322) for leucine (as in IP(3)R1) or isoleucine (as in RyR2) decreased the binding efficiency and shifted the selectivity to FKBP12.6; substitution of Val(2322) for aspartate completely abolished the FKBP interaction. Importantly, the occurrence of the valylprolyl residue as alpha-helix breaker was an important determinant of FKBP binding. This secondary structure is conserved among the different RyR isoforms but not in the IP(3)R isoforms. A chimeric RyR3/IP(3)R1, containing the core of the FKBP12-binding site of IP(3)R1 in the RyR3 context, retained this secondary structure and was able to interact with FKBPs. In contrast, IP(3)Rs did not interact with the FKBP isoforms. This indicates that the primary sequence in combination with the local structural environment plays an important role in targeting the FKBPs to the intracellular Ca(2+)-release channels. Structural differences in the FKBP-binding site of RyRs and IP(3)Rs may contribute to the occurrence of a stable interaction between RyR isoforms and FKBPs and to the absence of such interaction with IP(3)Rs.mixedBultynck, G.; Rossi, D.; Callewaert, G.; Missiaen, L.; Sorrentino, V.; Parys, J. B.; Smedt, H. D.Bultynck, G.; Rossi, D.; Callewaert, G.; Missiaen, L.; Sorrentino, V.; Parys, J. B.; Smedt, H. D
    corecore