2,425 research outputs found

    The research buyers' perspective of market research effectiveness

    Get PDF
    This study examines the views of research buyers about the efficacy of market research used within their firms. A sample of research buyers from Australia's top 1000 companies was asked to evaluate the research outcomes of their most recent market research project in terms of their overall business strategy. Specialist market research buyers (insights managers) believed their commissioned research was very effective. This was in contrast to research buyers in generalist roles who did not believe in the effectiveness of the research outcomes to the same extent. The overarchlng strategic direction adopted by the buyer's firm did not make a difference to the type of research conducted (,action orientated' vs. 'knowledge enhancing'). However, entrepreneurial firms were more likely to rate their research as effective and to have dedicated research buyers generating insights into their markets. The results of this study are inconsistent with earlier studies and indicate that the market research function within Australian firms stili plays an ambiguous role

    Looming struggles over technology for border control

    Get PDF
    New technologies under development, capable of inflicting pain on masses of people, could be used for border control against asylum seekers. Implementation might be rationalized by the threat of mass migration due to climate change, nuclear disaster or exaggerated fears of refugees created by governments. We focus on taser anti-personnel mines, suggesting both technological countermeasures and ways of making the use of such technology politically counterproductive. We also outline several other types of ‘non-lethal’ technology that could be used for border control and raise human rights concerns: high-powered microwaves, armed robots, wireless tasers, acoustic devices/vortex rings, ionizing and pulsed energy lasers, chemical calmatives, convulsants, bioregulators and malodurants. Whether all these possible border technologies will be implemented is a matter for speculation, but their serious human rights implications warrant advance scrutiny

    Scaling of the anomalous Hall effect in Sr1x_{1-x}Cax_xRuO3_3

    Full text link
    The anomalous Hall effect (AHE) of ferromagnetic thin films of Sr1x_{1-x}Cax_{x}RuO3_3 (0 x\leq x \leq 0.4) is studied as a function of xx and temperature TT. As xx increases, both the transition temperature TcT_c and the magnetization MM are reduced and vanish near xx \sim 0.7. For all compositions, the transverse resistivity ρH\rho_{H} varies non-monotonously with TT, and even changes sign, thus violating the conventional expression ρH=RoB+4πRsM(T)\rho_{H}=R_o B + 4\pi R_s M(T) (BB is the magnetic induction, while RoR_o and RsR_s are the ordinary and anomalous Hall coefficients). From the rather complicated data of ρH\rho_H, we find a scaling behavior of the transverse conductivity σxy\sigma_{xy} with M(T)M(T), which is well reproduced by the first-principles band calculation assuming the intrinsic origin of the AHE.Comment: REVTeX 4 style; 5 pages, 3 figures; revised 23/2 and accepted for publicatio

    Transport Properties, Thermodynamic Properties, and Electronic Structure of SrRuO3

    Full text link
    SrRuO3_3 is a metallic ferromagnet. Its electrical resistivity is reported for temperatures up to 1000K; its Hall coefficient for temperatures up to 300K; its specific heat for temperatures up to 230K. The energy bands have been calculated by self-consistent spin-density functional theory, which finds a ferromagnetic ordered moment of 1.45μB\mu_{{\rm B}} per Ru atom. The measured linear specific heat coefficient γ\gamma is 30mJ/mole, which exceeds the theoretical value by a factor of 3.7. A transport mean free path at room temperature of 10A˚\approx 10 \AA is found. The resistivity increases nearly linearly with temperature to 1000K in spite of such a short mean free path that resistivity saturation would be expected. The Hall coefficient is small and positive above the Curie temperature, and exhibits both a low-field and a high-field anomalous behavior below the Curie temperature.Comment: 6 pages (latex) and 6 figures (postscript, uuencoded.) This paper will appear in Phys. Rev. B, Feb. 15, 199

    Measurement of Proton Light Yield of Water-based Liquid Scintillator

    Get PDF
    The proton light yield of liquid scintillators is an important property in the context of their use in large-scale neutrino experiments, with direct implications for neutrino-proton scattering measurements and the discrimination of fast neutrons from inverse β-decay coincidence signals. This work presents the first measurement of the proton light yield of a water-based liquid scintillator (WbLS) formulated from 5% linear alkyl benzene (LAB), at energies below 20 MeV, as well as a measurement of the proton light yield of a pure LAB + 2 g/L 2,5-diphenyloxazole (PPO) mixture (LABPPO). The measurements were performed using a double time-of-flight method and a pulsed neutron beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The proton light yields were measured relative to that of a 477 keV electron. The relative proton light yield of WbLS was approximately 3.8% lower than that of LABPPO, itself exhibiting a relative proton light yield 15–20% higher than previous measurements of an analogous anoxic sample. The observed quenching is not compatible with the Birks model for either material, but is well described with the addition of Chou’s bimolecular quenching term. © 2023, The Author(s)

    Measurement of proton light yield of water-based liquid scintillator

    Get PDF
    The proton light yield of liquid scintillators is an important property in the context of their use in large-scale neutrino experiments, with direct implications for neutrino-proton scattering measurements and the discrimination of fast neutrons from inverse beta-decay coincidence signals. This work presents the first measurement of the proton light yield of a water-based liquid scintillator (WbLS) formulated from 5% linear alkyl benzene (LAB), at energies below 20 MeV, as well as a measurement of the proton light yield of a pure LAB + 2 g/L 2,5-diphenyloxazole (PPO) mixture (LABPPO). The measurements were performed using a double time-of-flight method and a pulsed neutron beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The proton light yields were measured relative to that of a 477 keV electron. The relative proton light yield of WbLS was approximately 3.8% lower than that of LABPPO, itself exhibiting a relative proton light yield 1520%15-20\% higher than previous measurements of an analogous anoxic sample. The observed quenching is not compatible with the Birks model for either material, but is well described with the addition of Chou's bimolecular quenching term.Comment: 14 pages, 11 figure

    Aphrati and Kato Syme: Pottery, Continuity, and Cult in Late Archaic and Classical Crete

    Get PDF
    The analysis of ceramics from Aphrati sheds valuable new light on the history of this Cretan settlement and on its relationship with a nearby rural sanctuary at Kato Syme in the Late Archaic and Classical periods. It has long been held that Aphrati was deserted from ca. 600 to 400 B.C. A pottery deposit from the domestic quarter, however, now supports occupation of the city during this period. A ceramic classification system is presented and the morphological development and absolute chronology of several key shapes at Aphrati and Kato Syme are plotted. Historical implications of the ceramic evidence are also explored

    Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange NMR

    Full text link
    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.Comment: 14 pages of text, 4 figure

    Boundary-Layer-Ingesting Inlet Flow Control

    Get PDF
    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow
    corecore