362 research outputs found

    The Changing Arctic : massive open online course.

    Get PDF
    The course aims to provide information on complex changes in the Arctic’s environment in an understandable way to inform students and society that will be inspired to value the Arctic and adapt sensitively to a new Arctic. After taking this course you will have an understanding of Arctic landscapes, how they were formed and how they are changing. You will also learn how scientists from countries around the North are working together to understand how these changes will affect vegetation, wildlife, the People of the North and the global community. You will experience a range of scientific topics, with up-to-date information on processes that will affect our future climate and the planet we share. We will discuss how the future Arctic environment will pose both challenges and opportunities to different sectors of the global community.Загл. с титул. экран

    Strategies of Survival in Plants of the Fennoscandian Tundra

    Get PDF
    Many arctic species originated outside the Arctic and some of their physiological responses are similar to those in temperate latitudes. Unique adaptations to the Arctic have rarely been found. The recent influx of other species has, however, broken down reproductive barriers and gene flow has been stimulated. In extreme arctic environments, selection forces driving evolution are mainly of the physical environment and plant interactions are positive. Elsewhere, biotic factors, such as herbivory, are important and plant interactions become negative through competition. Physical selective forces operate in winter and summer. Low winter temperatures rarely affect arctic plants, but snow depth and duration influence species distributions. Deep and persistent snow deforms plants and limits the period of resource acquisition. Cryptogams are common in such snow beds. Little or no snow cover exposes plants to abrasion by wind-blown particles and desiccation. In such fell-field sites, deciduous species and xerophytes, such as evergreen cushion plants, are common. Arctic summers are short and developmental processes are extended beyond one growing season, with perennials predominating. Cushion plants efficiently increase their temperatures above ambient, while evergreen and deciduous ericaceous dwarf shrubs coexist and have complementary strategies for intercepting radiation in a low canopy. Tundra soils are generally infertile and may be disturbed by freeze/thaw cycles. Nutrients are conserved by cycling within shoots and between ramets within clones. Vegetative proliferation enhances the survival of young ramets, while physiological integration between ramets enables young ramets to forage across patchy environments. Negative plant-animal relationships are particularly important in the Subarctic. Periodic infestation of moth caterpillars defoliate large areas of mountain birch and stimulate increases in populations of their predators. Periodic population peaks of small rodents graze or kill much vegetation and they may moderate the dynamic structure of plant communities, as the plant species have different abilities to regenerate.Key words: arctic plants, tundra, winter, snow, frostMots clés: plantes arctiques, toundra, hiver, neige, ge

    Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate

    Get PDF
    Background insect herbivory, in addition to insect outbreaks, can have an important long term influence on the performance of tree species. Since a projected warmer climate may favour insect herbivores, we use a dynamic ecosystem model to investigate the impacts of background herbivory on vegetation growth and productivity, as well as distribution and associated changes in terrestrial ecosystems of northern Europe. We used the GUESS ecosystem modelling framework and a simple linear model for including the leaf area loss of Betula pubescens in relation to mean July temperature. We tested the sensitivity of the responses of the simulated ecosystems to different, but realistic, degrees of insect damage. Predicted temperature increases are likely to enhance the potential insect impacts on vegetation. The impacts are strongest in the eastern areas, where potential insect damage to B. pubescens can increase by 4-5%. The increase in insect damage to B. pubescens results in a reduction of total birch leaf area (LAI), total birch biomass and birch productivity (Net Primary Production). This effect is stronger than the insect damage to leaf area alone would suggest, due to its second order effect on the competition between tree species. The model's demonstration that background herbivory may cause changes in vegetation structure suggests that insect damage, generally neglected by vegetation models, can change predictions of future forest composition. Carbon fluxes and albedo are only slightly influenced by background insect herbivory, indicating that background insect damage is of minor importance for estimating the feedback of terrestrial ecosystems to climate chang

    Future changes in vegetation and ecosystem function of the Barents Region

    Get PDF
    The dynamic vegetation model (LPJ-GUESS) is used to project transient impacts of changes in climate on vegetation of the Barents Region. We incorporate additional plant functional types, i.e. shrubs and defined different types of open ground vegetation, to improve the representation of arctic vegetation in the global model. We use future climate projections as well as control climate data for 1981-2000 from a regional climate model (REMO) that assumes a development of atmospheric CO2-concentration according to the B2-SRES scenario [IPCC, Climate Change 2001: The scientific basis. Contribution working group I to the Third assessment report of the IPCC. Cambridge University Press, Cambridge (2001)]. The model showed a generally good fit with observed data, both qualitatively when model outputs were compared to vegetation maps and quantitatively when compared with observations of biomass, NPP and LAI. The main discrepancy between the model output and observed vegetation is the overestimation of forest abundance for the northern parts of the Kola Peninsula that cannot be explained by climatic factors alone. Over the next hundred years, the model predicted an increase in boreal needle leaved evergreen forest, as extensions northwards and upwards in mountain areas, and as an increase in biomass, NPP and LAI. The model also projected that shade-intolerant broadleaved summergreen trees will be found further north and higher up in the mountain areas. Surprisingly, shrublands will decrease in extent as they are replaced by forest at their southern margins and restricted to areas high up in the mountains and to areas in northern Russia. Open ground vegetation will largely disappear in the Scandinavian mountains. Also counter-intuitively, tundra will increase in abundance due to the occupation of previously unvegetated areas in the northern part of the Barents Region. Spring greening will occur earlier and LAI will increase. Consequently, albedo will decrease both in summer and winter time, particularly in the Scandinavian mountains (by up to 18%). Although this positive feedback to climate could be offset to some extent by increased CO2 drawdown from vegetation, increasing soil respiration results in NEE close to zero, so we cannot conclude to what extent or whether the Barents Region will become a source or a sink of CO

    A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming

    Get PDF
    Aim Models project that climate warming will cause the tree line to move to higher elevations in alpine areas and more northerly latitudes in Arctic environments. We aimed to document changes or stability of the tree line in a sub-Arctic model area at different temporal and spatial scales, and particularly to clarify the ambiguity that currently exists about tree line dynamics and their causes. Location The study was conducted in the Tornetrask area in northern Sweden where climate warmed by 2.5 degrees C between 1913 and 2006. Mountain birch (Betula pubescens ssp. czerepanovii) sets the alpine tree line. Methods We used repeat photography, dendrochronological analysis, field observations along elevational transects and historical documents to study tree line dynamics. Results Since 1912, only four out of eight tree line sites had advanced: on average the tree line had shifted 24 m upslope (+0.2 m year-1 assuming linear shifts). Maximum tree line advance was +145 m (+1.5 m year-1 in elevation and +2.7 m year-1 in actual distance), whereas maximum retreat was 120 m downslope. Counter-intuitively, tree line advance was most pronounced during the cooler late 1960s and 1970s. Tree establishment and tree line advance were significantly correlated with periods of low reindeer (Rangifer tarandus) population numbers. A decreased anthropozoogenic impact since the early 20th century was found to be the main factor shaping the current tree line ecotone and its dynamics. In addition, episodic disturbances by moth outbreaks and geomorphological processes resulted in descent and long-term stability of the tree line position, respectively. Main conclusions In contrast to what is generally stated in the literature, this study shows that in a period of climate warming, disturbance may not only determine when tree line advance will occur but if tree line advance will occur at all. In the case of non-climatic climax tree lines, such as those in our study area, both climate-driven model projections of future tree line positions and the use of the tree line position for bioclimatic monitoring should be used with caution

    A long-term Arctic snow depth record from Abisko, northern Sweden, 1913–2004

    Get PDF
    A newly digitized record of snow depth from the Abisko Scientific Research Station in northern Sweden covers the period 1913-present. Mean snow depths were taken from paper records of measurements made on a profile comprising 10 permanent stakes. This long-term record yields snow depths consistent with two other shorter term Abisko records: measurements made at another 10-stake profile (1974-present) and at a single stake (1956-present). The measurement interval is variable, ranging from daily to monthly, and there are no data for about half Of the winter months in the period 1930-1956. To fill the gaps, we use a simple snowpack model driven by concurrent temperature and precipitation measurements at Abisko. Model snow depths are similar to observed; differences between the two records are comparable to those between profile and single stake measurements. For both model and observed snow depth records, the most statistically significant trend is in winter mean snow depths, amounting to an increase of about 2 cm or 5% of the mean per decade over the whole measurement period, and 10% per decade since the 1930-40s, but all seasonal means of snow depth show positive trends on the longest timescales. However, the start, end, and length of the snow season do not show any statistically significant long-term trends. Finally, the relation between the Arctic Oscillation index and Abisko temperature, precipitation and snow depth is positive and highly significant, with the best correlations for winter

    Sensitivity of an ecosystem model to hydrology and temperature

    Get PDF
    We tested the sensitivity of a dynamic ecosystem model (LPJ-GUESS) to the representation of soil moisture and soil temperature and to uncertainties in the prediction of precipitation and air temperature. We linked the ecosystem model with an advanced hydrological model (JULES) and used its soil moisture and soil temperature as input into the ecosystem model. We analysed these sensitivities along a latitudinal gradient in northern Russia. Differences in soil temperature and soil moisture had only little influence on the vegetation carbon fluxes, whereas the soil carbon fluxes were very sensitive to the JULES soil estimations. The sensitivity changed with latitude, showing stronger influence in the more northern grid cell. The sensitivity of modelled responses of both soil carbon fluxes and vegetation carbon fluxes to uncertainties in soil temperature were high, as both soil and vegetation carbon fluxes were strongly impacted. In contrast, uncertainties in the estimation of the amount of precipitation had little influence on the soil or vegetation carbon fluxes. The high sensitivity of soil respiration to soil temperature and moisture suggests that we should strive for a better understanding and representation of soil processes in ecosystem models to improve the reliability of predictions of future ecosystem change

    South-Siberian mountain mires: Perspectives on a potentially vulnerable remote source of biodiversity

    Get PDF
    Changes in climate, land-use and pollution are having disproportionate impacts on ecosystems and biodiversity of arctic and mountain ecosystems. While these impacts are well-documented for many areas of the Arctic and alpine regions, some isolated and inaccessible mountain areas are poorly studied. Furthermore, even in well-studied regions, assessments of biodiversity and species to environmental change are biased towards vascular plants and cryptogams, particularly bryophytes are far less represented. This paper aims to document the environments of the remove and inaccessible Altai-Sayan mountain mires and particularly their bryofloras where threatened specias exist and species new to the regional flora are still being found. As these mountain mires are relatively inaccessible, changes in drivers of change ad their ecosystem and biodiversity impacts have not been monitored. However, the remoteness of the mires has so far protected them and their species. In this study, we describe the mires, their bryophyte species and the expected impacts of environmental stressors to bring attention to the urgency of documenting change and conserving these pristine ecosystems
    corecore