44 research outputs found

    Thinning of the RPE and choroid associated with T lymphocyte recruitment in aged and light-challenged mice

    Get PDF
    International audienceThe choroidal vasculature is essential when it comes to bringing oxygen and nutrients to the functioning retina and evacuating debris resulting from the normal visual cycle. Choroidal thinning is a common feature in many human eye diseases, including high myopia [1,2] and retinitis pigmentosa [3,4], and has been reproducibly observed with age [5-7]. However, the association between choroidal thinning and age-related macular degeneration (AMD) remains controversial. Some authors have reported the loss of choriocapillaries in eyes with exudative AMD [8], and choroidal thinning has been detected in some studies [9-11]. Choroidal thinning has also been associated with geographic atrophy (GA), the dry form of late AMD [12-15]. A morphometric analysis by Ramrattan et al. more than two decades ago showed a decrease in choriocapillary density and diameter with age and in GA, but choroidal thinning was only significant with age [6]. Moreover, it has been reported that the choriocapillaries and choroid are thinner in areas where the RPE has degenerated [8]. However, all studies agree that aging is associated with significant choroidal thinning [16-18]. The exact mechanisms behind choroidal thinning with age or disease are not clear. The RPE is a monolayer of pigmented cells situated between photoreceptors and Bruch's membrane; its plays an essential role in the visual cycle. RPE65, which is also called 11-cis retinol isomerase and is strongly expressed in the RPE, participates in the production of 11-cis retinal [19], which is essential for photoreceptor function [20]. Mutations in the RPE65 gene cause progressive photoreceptor degeneration [21,22] and adult RPE65 −/

    Delta-like 4 inhibits choroidal neovascularization despite opposing effects on vascular endothelium and macrophages.: DLL4's opposing effects in choroidal neovascularization

    Get PDF
    International audienceInflammatory neovascularization, such as choroidal neovascularization (CNV), occur in the presence of Notch expressing macrophages. DLL4s anti-angiogenic effect on endothelial cells (EC) has been widely recognized, but its influence on Notch signaling on macrophages and its overall effect in inflammatory neovascularization is not well understood. We identified macrophages and ECs as the main Notch 1 and Notch 4 expressing cells in CNV. A soluble fraction spanning Ser28-Pro525 of the murine extracellular DLL4 domain (sDLL4/28-525) activated the Notch pathway, as it induces Notch target genes in macrophages and ECs and inhibited EC proliferation and vascular sprouting in aortic rings. In contrast, sDLL4/28-525 increased pro-angiogenic VEGF, and IL-1β expression in macrophages responsible for increased vascular sprouting observed in aortic rings incubated in conditioned media from sDLL4/28-525 stimulated macrophages. In vivo, Dll4(+/-) mice developed significantly more CNV and sDLL4/28-525 injections inhibited CNV in Dll4(+/-) CD1 mice. Similarly, sDLL4/28-525 inhibited CNV in C57Bl6 and its effect was reversed by a γ-secretase inhibitor that blocks Notch signaling. The inhibition occurred despite increased VEGF, IL-1β expression in infiltrating inflammatory macrophages in sDLL4/28-525 treated mice and might be due to direct inhibition of EC proliferation in laser-induced CNV as demonstrated by EdU labelling in vivo. In conclusion, Notch activation on macrophages and ECs leads to opposing effects in inflammatory neovascularization in situations such as CNV

    Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration

    Get PDF
    International audiencePhysiologically, the retinal pigment epithelium (RPE) expresses immunosuppressive signals such as FAS ligand (FASL), which prevents the accumulation of leukocytes in the subretinal space. Age-related macular degeneration (AMD) is associated with a breakdown of the subretinal immunosuppressive environment and chronic accumulation of mononuclear phagocytes (MPs). We show that subretinal MPs in AMD patients accumulate on the RPE and express high levels of APOE. MPs of Cx3cr1 À/À mice that develop MP accumulation on the RPE, photoreceptor degeneration, and increased choroidal neovascularization similarly express high levels of APOE. ApoE deletion in Cx3cr1 À/À mice prevents patho-genic age-and stress-induced subretinal MP accumulation. We demonstrate that increased APOE levels induce IL-6 in MPs via the activation of the TLR2-CD14-dependent innate immunity receptor cluster. IL-6 in turn represses RPE FasL expression and prolongs subretinal MP survival. This mechanism may account, in part, for the MP accumulation observed in Cx3cr1 À/À mice. Our results underline the inflammatory role of APOE in sterile inflammation in the immunosuppressive subretinal space. They provide rationale for the implication of IL-6 in AMD and open avenues toward therapies inhibiting pathogenic chronic inflammation in late AMD

    MFGE8 does not influence chorio-retinal homeostasis or choroidal neovascularization in vivo

    Get PDF
    Purpose: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or “wet” Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. Methods: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with “wet” AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8+/− mice expressing ß-galactosidase. Aged Mfge8+/− and Mfge8−/− mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. Results: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8−/− mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8−/− mice as compared to controls. Conclusions: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8−/− mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD

    Influence des oestrogènes sur les macrophages murins et leurs réponses inflammatoires

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Estrogen receptor actions on vascular biology and inflammation: implications in vascular pathophysiology.

    No full text
    International audienceWhereas hormonal therapy (HT) may increase the risk of coronary heart disease (CHD) and stroke in menopausal women, epidemiological studies (protection in premenopausal women) suggest and experimental studies (prevention of fatty streak development in animals) demonstrate a major atheroprotective action of estradiol (E2). The understanding of the deleterious and beneficial effects of estrogens is thus required at both a cellular and molecular level. Both the endothelium and the immuno-inflammatory system play a key role in the development of fatty streak deposit as well as in the rupture of the atherosclerotic plaque. Whereas E2 favors an anti-inflammatory effect in vitro (cultured cells), it rather elicits a pro-inflammatory response in vivo at the level of several subpopulations of the immuno-inflammatory system, which could contribute to plaque destabilization. E2 promotes beneficial actions on the endothelium such as nitric oxide and prostacyclin production. E2 actions are essentially mediated by two molecular targets: estrogen receptor alpha (ER-alpha) and beta (ER-beta), but the former appears to mediate most of the actions of E2 on the endothelium and on the immune system. ER-alpha modulates target gene transcription through two activation functions (AF), AF-1 and AF-2, even though signalling via ER-alpha located at the plasma membrane (responsible for membrane-initiated steroid signalling (MISS)/(extra-genomic)) can also lead to an indirect effect on gene transcription. Recently, we demonstrated that ER-alpha AF-1 is not required for the vasculoprotective actions of E2, whereas it is necessary for the effects of E2 on its reproductive targets. These results suggest that selective estrogen receptor modulators stimulating ER-alpha with minimal activation of ER-alpha AF-1 could retain beneficial vascular actions, while minimizing the sexual effects

    Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization.

    Get PDF
    Branch retinal vein occlusion (BRVO) leads to extensive vascular remodeling and is important cause of visual impairment. Although the vascular morphological changes following experimental vein occlusion have been described in a variety of models using angiography, the underlying cellular events are ill defined.We here show that laser-induced experimental BRVO in mice leads to a wave of TUNEL-positive endothelial cell (EC) apoptosis in the upstream vascular network associated with a transient edema and hemorrhages. Subsequently, we observe an induction of EC proliferation within the dilated vein and capillaries, detected by EdU incorporation, and the edema resolves. However, the pericytes of the upstream capillaries are severely reduced, which was associated with continuing EC apoptosis and proliferation. The vascular remodeling was associated with increased expression of TGFβ, TSP-1, but also FGF2 expression. Exposure of the experimental animals to hypoxia, when pericyte (PC) dropout had occurred, led to a dramatic increase in endothelial cell proliferation, confirming the vascular instability induced by the experimental BRVO.Experimental BRVO leads to acute endothelial cells apoptosis and increased permeability. Subsequently the upstream vascular network remains destabilized, characterized by pericyte dropout, un-physiologically high endothelial cells turnover and sensitivity to hypoxia. These early changes might pave the way for capillary loss and subsequent chronic ischemia and edema that characterize the late stage disease
    corecore