1,322 research outputs found

    Calculation of the Characteristic Functions of Anharmonic Oscillators

    Full text link
    The energy levels of quantum systems are determined by quantization conditions. For one-dimensional anharmonic oscillators, one can transform the Schrodinger equation into a Riccati form, i.e., in terms of the logarithmic derivative of the wave function. A perturbative expansion of the logarithmic derivative of the wave function can easily be obtained. The Bohr-Sommerfeld quantization condition can be expressed in terms of a contour integral around the poles of the logarithmic derivative. Its functional form is B_m(E,g) = n + 1/2, where B is a characteristic function of the anharmonic oscillator of degree m, E is the resonance energy, and g is the coupling constant. A recursive scheme can be devised which facilitates the evaluation of higher-order Wentzel-Kramers-Brioullin (WKB) approximants. The WKB expansion of the logarithmic derivative of the wave function has a cut in the tunneling region. The contour integral about the tunneling region yields the instanton action plus corrections, summarized in a second characteristic function A_m(E,g). The evaluation of A_m(E,g) by the method of asymptotic matching is discussed for the case of the cubic oscillator of degree m=3.Comment: 11 pages, LaTeX; three further typographical errors correcte

    Distributional Borel Summability for Vacuum Polarization by an External Electric Field

    Full text link
    It is proved that the divergent perturbation expansion for the vacuum polarization by an external constant electric field in the pair production sector is Borel summable in the distributional sense.Comment: 14 page

    A Hamiltonian Formulation of the Pais-Uhlenbeck Oscillator that Yields a Stable and Unitary Quantum System

    Full text link
    We offer a new Hamiltonian formulation of the classical Pais-Uhlenbeck Oscillator and consider its canonical quantization. We show that for the non-degenerate case where the frequencies differ, the quantum Hamiltonian operator is a Hermitian operator with a positive spectrum, i.e., the quantum system is both stable and unitary. A consistent description of the degenerate case based on a Hamiltonian that is quadratic in momenta requires its analytic continuation into a complex Hamiltonian system possessing a generalized PT-symmetry (an involutive antilinear symmetry). We devise a real description of this complex system, derive an integral of motion for it, and explore its quantization.Comment: 11 page

    Distributional Borel Summability of Odd Anharmonic Oscillators

    Full text link
    It is proved that the divergent Rayleigh-Schrodinger perturbation expansions for the eigenvalues of any odd anharmonic oscillator are Borel summable in the distributional sense to the resonances naturally associated with the system

    PT Symmetric Schr\"odinger Operators: Reality of the Perturbed Eigenvalues

    Get PDF
    We prove the reality of the perturbed eigenvalues of some PT symmetric Hamiltonians of physical interest by means of stability methods. In particular we study 2-dimensional generalized harmonic oscillators with polynomial perturbation and the one-dimensional x2(ix)ϵx^2(ix)^{\epsilon} for 1<ϵ<0-1<\epsilon<0

    Perturbation theory of PT-symmetric Hamiltonians

    Full text link
    In the framework of perturbation theory the reality of the perturbed eigenvalues of a class of \PTsymmetric Hamiltonians is proved using stability techniques. We apply this method to \PTsymmetric unperturbed Hamiltonians perturbed by \PTsymmetric additional interactions

    Construction of PT-asymmetric non-Hermitian Hamiltonians with CPT-symmetry

    Full text link
    Within CPT-symmetric quantum mechanics the most elementary differential form of the charge operator C is assumed. A closed-form integrability of the related coupled differential self-consistency conditions and a natural embedding of the Hamiltonians in a supersymmetric scheme is achieved. For a particular choice of the interactions the rigorous mathematical consistency of the construction is scrutinized suggesting that quantum systems with non-self-adjoint Hamiltonians may admit probabilistic interpretation even in presence of a manifest breakdown of both T symmetry (i.e., Hermiticity) and PT symmetry.Comment: 13 page

    Canonical Expansion of PT-Symmetric Operators and Perturbation Theory

    Full text link
    Let HH be any \PT symmetric Schr\"odinger operator of the type 2Δ+(x12+...+xd2)+igW(x1,...,xd) -\hbar^2\Delta+(x_1^2+...+x_d^2)+igW(x_1,...,x_d) on L2(Rd)L^2(\R^d), where WW is any odd homogeneous polynomial and gRg\in\R. It is proved that H\P H is self-adjoint and that its eigenvalues coincide (up to a sign) with the singular values of HH, i.e. the eigenvalues of HH\sqrt{H^\ast H}. Moreover we explicitly construct the canonical expansion of HH and determine the singular values μj\mu_j of HH through the Borel summability of their divergent perturbation theory. The singular values yield estimates of the location of the eigenvalues \l_j of HH by Weyl's inequalities.Comment: 20 page
    corecore