4,888 research outputs found

    A longitudinal investigation of the relationship between unconditional positive self-regard and posttraumatic growth

    Get PDF
    The present study investigated whether unconditional positive self-regard (UPSR) is associated with subsequent posttraumatic growth (PTG) following the experience of a traumatic life event. A total of 143 participants completed an online questionnaire to assess the experience of traumatic life events, posttraumatic stress, well-being and UPSR (Time 1). Three months later, 76 of the participants completed measures of well-being and perceived PTG (Time 2). Analyses were conducted to test for association between UPSR at Time 1 and perceptions of PTG at Time 2. Results showed that higher UPSR at T1 was associated with higher perceived PTG at Time 2. To measure actual growth, individual differences in well-being were computed between Time 1 and Time 2. Results showed that higher UPSR at T1 was associated with higher actual PTG. Implications of these findings are discussed and future directions for research in this area considered. Specifically, results are consistent with a person-centered understanding of therapeutic approaches to the facilitation of PT

    Long-lived quantum coherence in photosynthetic complexes at physiological temperature

    Full text link
    Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center which stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer - a wavelike transfer mechanism - occurs in many photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson antenna complex (FMO) as a model system, theoretical studies incorporating both incoherent and coherent transfer as well as thermal dephasing predict that environmentally assisted quantum transfer efficiency peaks near physiological temperature; these studies further show that this process is equivalent to a quantum random walk algorithm (5-8). This theory requires long-lived quantum coherence at room temperature, which never has been observed in FMO. Here we present the first evidence that quantum coherence survives in FMO at physiological temperature for at least 300 fs, long enough to perform a rudimentary quantum computational operation. This data proves that the wave-like energy transfer process discovered at 77 K is directly relevant to biological function. Microscopically, we attribute this long coherence lifetime to correlated motions within the protein matrix encapsulating the chromophores, and we find that the degree of protection afforded by the protein appears constant between 77 K and 277 K. The protein shapes the energy landscape and mediates an efficient energy transfer despite thermal fluctuations. The persistence of quantum coherence in a dynamic, disordered system under these conditions suggests a new biomimetic strategy for designing dedicated quantum computational devices that can operate at high temperature.Comment: PDF files, 15 pages, 3 figures (included in the PDF file

    Statistical Learning for Resting-State fMRI: Successes and Challenges

    Get PDF
    International audienceIn the absence of external stimuli, fluctuations in cerebral activity can be used to reveal intrinsic structures. Well-conditioned probabilistic models of this so-called resting-state activity are needed to support neuroscientific hypotheses. Exploring two specific descriptions of resting-state fMRI, namely spatial analysis and connectivity graphs, we discuss the progress brought by statistical learning techniques, but also the neuroscientific picture that they paint, and possible modeling pitfalls

    Everyday cosmopolitanism in representations of Europe among young Romanians in Britain

    Get PDF
    The paper presents an analysis of everyday cosmopolitanism in constructions of Europe among young Romanian nationals living in Britain. Adopting a social representations approach, cosmopolitanism is understood as a cultural symbolic resource that is part of everyday knowledge. Through a discursively-oriented analysis of focus group data, we explore the ways in which notions of cosmopolitanism intersect with images of Europeanness in the accounts of participants. We show that, for our participants, representations of Europe are anchored in an Orientalist schema of West-vs.-East, whereby the West is seen as epitomising European values of modernity and progress, while the East is seen as backward and traditional. Our findings further show that representations of cosmopolitanism reinforce this East/West dichotomy, within a discourse of ‘Occidental cosmopolitanism’. The paper concludes with a critical discussion of the diverse and complex ideological foundations of these constructions of European cosmopolitanism and their implications

    Multiscale photosynthetic exciton transfer

    Full text link
    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published online by Nature Physics (2012

    Actors and networks or agents and structures: towards a realist view of information systems

    Get PDF
    Actor-network theory (ANT) has achieved a measure of popularity in the analysis of information systems. This paper looks at ANT from the perspective of the social realism of Margaret Archer. It argues that the main issue with ANT from a realist perspective is its adoption of a `flat' ontology, particularly with regard to human beings. It explores the value of incorporating concepts from ANT into a social realist approach, but argues that the latter offers a more productive way of approaching information systems

    Stabilized Fiber-Optic Distribution of Reference Frequency

    Get PDF
    An optoelectronic system distributes a reference signal of low noise and highly stabilized phase and frequency (100 MHz) from an atomic frequency standard to a remote facility at a distance up to tens of kilometers. The reference signal is transmitted to the remote station as amplitude modulation of an optical carrier signal propagating in an optical fiber. The stabilization scheme implemented in this system is intended particularly to suppress phase and frequency fluctuations caused by vibrations and by expansion and contraction of the optical fiber and other components in diurnal and seasonal heating and cooling cycles. The system (see figure) comprises several subsystems, the main one being (1) a hydrogen-maser or linear-ion-trap frequency standard in an environmentally controlled room in a signal-processing center (SPC), (2) a stabilized fiber-optic distribution assembly (SFODA), (3) a compensated sapphire oscillator (CSO) in an environmentally controlled room in the remote facility, (4) thermally stabilized distribution amplifiers and cabling from the environmentally controlled room to end users, and (5) performance- measuring equipment

    Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools

    Get PDF
    Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis

    High-resolution microwave frequency dissemination on an 86-km urban optical link

    Full text link
    We report the first demonstration of a long-distance ultra stable frequency dissemination in the microwave range. A 9.15 GHz signal is transferred through a 86-km urban optical link with a fractional frequency stability of 1.3x10-15 at 1 s integration time and below 10-18 at one day. The optical link phase noise compensation is performed with a round-trip method. To achieve such a result we implement light polarisation scrambling and dispersion compensation. This link outperforms all the previous radiofrequency links and compares well with recently demonstrated full optical links.Comment: 11 pages, 5 figure

    If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation

    Get PDF
    Spatial reciprocity is a well known tour de force of cooperation promotion. A thorough understanding of the effects of different population densities is therefore crucial. Here we study the evolution of cooperation in social dilemmas on different interaction graphs with a certain fraction of vacant nodes. We find that sparsity may favor the resolution of social dilemmas, especially if the population density is close to the percolation threshold of the underlying graph. Regardless of the type of the governing social dilemma as well as particularities of the interaction graph, we show that under pairwise imitation the percolation threshold is a universal indicator of how dense the occupancy ought to be for cooperation to be optimally promoted. We also demonstrate that myopic updating, due to the lack of efficient spread of information via imitation, renders the reported mechanism dysfunctional, which in turn further strengthens its foundations.Comment: 6 two-column pages, 5 figures; accepted for publication in Scientific Reports [related work available at http://arxiv.org/abs/1205.0541
    corecore