12 research outputs found

    Testing the effectiveness of two natural selection simulations in the context of a large‑enrollment undergraduate laboratory class

    Get PDF
    Background: Simulations can be an active and engaging way for students to learn about natural selection, and many have been developed, including both physical and virtual simulations. In this study we assessed the student experience of, and learning from, two natural selection simulations, one physical and one virtual, in a large enrollment introductory biology lab course. We assigned students to treatments (the physical or virtual simulation activity) by section and assessed their understanding of natural selection using a multiple-choice pre-/post-test and short-answer responses on a post-lab assignment. We assessed student experience of the activities through structured observations and an affective survey. Results: Students in both treatments showed increased understanding of natural selection after completing the simulation activity, but there were no differences between treatments in learning gains on the pre-/post-test, or in the prevalence of concepts and misconceptions in written answers. On a survey of self-reported enjoyment they rated the physical activity significantly higher than the virtual activity. In classroom observations of student behavior, we found significant differences in the distribution of behaviors between treatments, including a higher frequency of off task behavior during the physical activity. Conclusions: Our results suggest that both simulations are valuable active learning tools to aid students’ understanding of natural selection, so decisions about which simulation to use in a given class, and how to best implement it, can be motivated by contextual factors

    Lifeact-mEGFP Reveals a Dynamic Apical F-Actin Network in Tip Growing Plant Cells

    Get PDF
    Background Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments. Methodology/Principal Findings In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore. Conclusions/Significance Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin\u27s role in tip growing plant cells

    atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins

    Get PDF
    The members of the Toc159 family of GTPases act as the primary receptors for the import of nucleus-encoded preproteins into plastids. Toc159, the most abundant member of this family in chloroplasts, is required for chloroplast biogenesis (Bauer, J., K. Chen, A. Hiltbunner, E. Wehrli, M. Eugster, D. Schnell, and F. Kessler. 2000. Nature. 403:203–207) and has been shown to covalently cross-link to bound preproteins at the chloroplast surface (Ma, Y., A. Kouranov, S. LaSala, and D.J. Schnell. 1996. J. Cell Biol. 134:1–13; Perry, S.E., and K. Keegstra. 1994. Plant Cell. 6:93–105). These reports led to the hypothesis that Toc159 functions as a selective import receptor for preproteins that are required for chloroplast development. In this report, we provide evidence that Toc159 is required for the import of several highly expressed photosynthetic preproteins in vivo. Furthermore, we demonstrate that the cytoplasmic and recombinant forms of soluble Toc159 bind directly and selectively to the transit peptides of these representative photosynthetic preproteins, but not representative constitutively expressed plastid preproteins. These data support the function of Toc159 as a selective import receptor for the targeting of a set of preproteins required for chloroplast biogenesis
    corecore