162 research outputs found

    Application of scanning ion conductance microscopy to localised patch clamp recording from presynaptic terminals

    Get PDF
    The spatial distribution of ion channels in different subcellular regions is a key determinant of neuronal behaviour. Patch clamp electrophysiology allows characterisation of ion channel activity, but precise localisation is more difficult. This is particularly true for very small, specialised compartments such as synaptic terminals, which are inaccessible by conventional, direct patch recording methods. Scanning ion conductance microscopy (SICM) generates high resolution topographic images by using a precisely positioned probe to measure ion currents. The development of a new ‘hopping’ mode allows convoluted neuronal networks to be imaged using the SICM probe. Some details of the implementation of this mode are described. The geometry of SICM pipette tips is examined, and the interaction between the probe and the cell membrane is shown to differ from the standard account. Application of SICM to localised patch clamp recording has previously been demonstrated in several cell types and here is extended to record from presynaptic sites. Control experiments are performed and a model is introduced to explain how the use of fine-tipped SICM pipettes may give rise to artefacts seen in some of these experiments. The technique is then applied to synaptic boutons in primary cerebellar culture and a number of successful recordings are presented, along with some attempts to combine the advantages of SICM positioning with those of more conventional patch clamp pipettes. Experimental limitations of these approaches are discussed

    wd=−1w_d=-1 in interacting quintessence model

    Full text link
    A model consisting of quintessence scalar field interacting with cold dark matter is considered. Conditions required to reach wd=−1w_d=-1 are discussed. It is shown that depending on the potential considered for the quintessence, reaching the phantom divide line puts some constraints on the interaction between dark energy and dark matter. This also may determine the ratio of dark matter to dark energy density at wd=−1w_d=-1.Comment: 10 pages, references updated, some notes added, minor changes applied, accepted for publication in Eur. Phys. J.

    Neutrino mixing and CP-violation

    Get PDF
    The prospects of measuring the leptonic angles and CP-odd phases at a neutrino factory are discussed in two scenarios: 1) three active neutrinos as indicated by the present ensemble of atmospheric plus solar data; 2) three active plus one sterile neutrino when the LSND signal is also taken into account. For the latter we develop one and two mass dominance approximations. The appearance of wrong sign muons in long baseline experiments and tau leptons in short baseline ones provides the best tests of CP-violation in scenarios 1) and 2), respectively.Comment: 22 pages, LaTeX2e, 17 eps files, use package epsfi

    Four species neutrino oscillations at Μ\nu-Factory: sensitivity and CP-violation

    Get PDF
    The prospects of measuring the leptonic angles and CP-odd phases at a {\em neutrino factory} are discussed in the scenario of three active plus one sterile neutrino. We consider the \nu_\mu \raw \nu_e LSND signal. Its associated large mass difference leads to observable neutrino oscillations at short (∌1\sim 1 km) baseline experiments. Sensitivities to the leptonic angles down to 10−310^{-3} can be easily achieved with a 1 Ton detector. Longer baseline experiments (∌100\sim 100 km) with a 1 Kton detector can provide very clean tests of CP-violation especially through tau lepton detection.Comment: 15 pages, LaTeX2e, 14 eps files, use package epsfi

    Low Energy Solar Neutrinos and Spin Flavour Precession

    Full text link
    The possibility that the Gallium data effectively indicates a time modulation of the solar active neutrino flux in possible connection to solar activity is examined on the light of spin flavour precession to sterile neutrinos as a subdominant process in addition to oscillations. We distinguish two sets of Gallium data, relating them to high and low solar activity. Such modulation affects principally the low energy neutrinos (pppp and 7Be^7 Be) so that the effect, if it exists, will become most clear in the forthcoming Borexino and LENS experiments and will provide evidence for a neutrino magnetic moment. Using a model previously developed, we perform two separate fits in relation to low and high activity periods to all solar neutrino data. These fits include the very recent charged current spectrum from the SNO experiment. We also derive the model predictions for Borexino and LENS experiments.Comment: 20 pages, 5 ps figures, 1 eps figure, final version to be published in JHE

    Potential-density pairs for axisymmetric galaxies: the influence of scalar fields

    Full text link
    We present a formulation for potential-density pairs to describe axisymmetric galaxies in the Newtonian limit of scalar-tensor theories of gravity. The scalar field is described by a modified Helmholtz equation with a source that is coupled to the standard Poisson equation of Newtonian gravity. The net gravitational force is given by two contributions: the standard Newtonian potential plus a term stemming from massive scalar fields. General solutions have been found for axisymmetric systems and the multipole expansion of the Yukawa potential is given. In particular, we have computed potential-density pairs of galactic disks for an exponential profile and their rotation curves.Comment: 8 pages, no figures, corrected version to the one that will appear in Gen. Relativ. Gravit., where a small typo in eq. (13) is presen

    Dilatonic Interpretation of the Quintessence?

    Full text link
    We discuss the possibility that "quintessential effects", recently displayed by large scale observations, may be consistently described in the context of the low-energy string effective action, and we suggest a possible approach to the problem of the cosmic coincidence based on the link between the strength of the dilaton couplings and the cosmological state of our Universe.Comment: 6 pages, Revtex, four figures included using epsfig. To appear in Phys. Rev.

    Ghost D-branes

    Full text link
    We define a ghost D-brane in superstring theories as an object that cancels the effects of an ordinary D-brane. The supergroups U(N|M) and OSp(N|M) arise as gauge symmetries in the supersymmetric world-volume theory of D-branes and ghost D-branes. A system with a pair of D-brane and ghost D-brane located at the same location is physically equivalent to the closed string vacuum. When they are separated, the system becomes a new brane configuration. We generalize the type I/heterotic duality by including n ghost D9-branes on the type I side and by considering the heterotic string whose gauge group is OSp(32+2n|2n). Motivated by the type IIB S-duality applied to D9- and ghost D9-branes, we also find type II-like closed superstrings with U(n|n) gauge symmetry.Comment: 49 pages, 6 figures, harvmac. v2: references and acknowledgements adde

    Cosmic F- and D-strings

    Full text link
    Macroscopic fundamental and Dirichlet strings have several potential instabilities: breakage, tachyon decays, and confinement by axion domain walls. We investigate the conditions under which metastable strings can exist, and we find that such strings are present in many models. There are various possibilities, the most notable being a network of (p,q) strings. Cosmic strings give a potentially large window into string physics.Comment: 27 pages, 5 figures; v. 5: JHEP style, added comments in section 2.

    CDMS, Supersymmetry and Extra Dimensions

    Get PDF
    The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on sources and detection of dark matter and dark energy in the universe, Marina del Rey, Feb 22-24, 200
    • 

    corecore