186 research outputs found

    The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    Get PDF
    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development

    Identification of FAM111A as an SV40 Host Range Restriction and Adenovirus Helper Factor

    Get PDF
    The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT

    mTOR Is Essential for the Proteotoxic Stress Response, HSF1 Activation and Heat Shock Protein Synthesis

    Get PDF
    The target of rapamycin (TOR) is a high molecular weight protein kinase that regulates many processes in cells in response to mitogens and variations in nutrient availability. Here we have shown that mTOR in human tissue culture cells plays a key role in responses to proteotoxic stress and that reduction in mTOR levels by RNA interference leads to increase sensitivity to heat shock. This effect was accompanied by a drastic reduction in ability to synthesize heat shock proteins (HSP), including Hsp70, Hsp90 and Hsp110. As HSP transcription is regulated by heat shock transcription factor 1 (HSF1), we examined whether mTOR could directly phosphorylate this factor. Indeed, we determined that mTOR could directly phosphorylate HSF1 on serine 326, a key residue in transcriptional activation. HSF1 was phosphorylated on S326 immediately after heat shock and was triggered by other cell stressors including proteasome inhibitors and sodium arsenite. Null mutation of S326 to alanine led to loss of ability to activate an HSF1-regulated promoter-reporter construct, indicating a direct role for mTOR and S326 in transcriptional regulation of HSP genes during stress. As mTOR is known to exist in at least two intracellular complexes, mTORC1 and mTOR2 we examined which complex might interact with HSF1. Indeed mTORC1 inhibitor rapamycin prevented HSF1-S326 phosphorylation, suggesting that this complex is involved in HSF1 regulation in stress. Our experiments therefore suggest a key role for mTORC1 in transcriptional responses to proteotoxic stress

    Immunization Rates and Vaccine Beliefs Among Patients with Inflammatory Bowel Disease: An Opportunity for Improvement

    Get PDF
    Immunosuppressive agents used to treat inflammatory bowel disease (IBD) can increase the risk for infections, several of which are preventable through vaccination. Our study aimed to describe vaccine utilization by immunosuppression status, examine reasons for vaccine refusal, and identify characteristics associated with lack of influenza vaccination in IBD patients

    Use of Medicare diagnosis and procedure codes to improve detection of surgical site infections following hip arthroplasty, knee arthroplasty, and vascular surgery

    Get PDF
    ObjectiveTo evaluate the use of routinely collected electronic health data in Medicare claims to identify surgical site infections (SSIs) following hip arthroplasty, knee arthroplasty, and vascular surgery.DesignRetrospective cohort study.SettingFour academic hospitals that perform prospective SSI surveillance.MethodsWe developed lists of International Classification of Diseases, Ninth Revision, and Current Procedural Terminology diagnosis and procedure codes to identify potential SSIs. We then screened for these codes in Medicare claims submitted by each hospital on patients older than 65 years of age who had undergone 1 of the study procedures during 2007. Each site reviewed medical records of patients identified by either claims codes or traditional infection control surveillance to confirm SSI using Centers for Disease Control and Prevention/National Healthcare Safety Network criteria. We assessed the performance of both methods against all chart-confirmed SSIs identified by either method.ResultsClaims-based surveillance detected 1.8-4.7-fold more SSIs than traditional surveillance, including detection of all previously identified cases. For hip and vascular surgery, there was a 5-fold and 1.6-fold increase in detection of deep and organ/space infections, respectively, with no increased detection of deep and organ/space infections following knee surgery. Use of claims to trigger chart review led to confirmation of SSI in 1 out of 3 charts for hip arthroplasty, 1 out of 5 charts for knee arthroplasty, and 1 out of 2 charts for vascular surgery.ConclusionClaims-based SSI surveillance markedly increased the number of SSIs detected following hip arthroplasty, knee arthroplasty, and vascular surgery. It deserves consideration as a more effective approach to target chart reviews for identifying SSIs

    Protein Kinase A Regulates Molecular Chaperone Transcription and Protein Aggregation

    Get PDF
    Heat shock factor 1 (HSF1) regulates one of the major pathways of protein quality control and is essential for deterrence of protein-folding disorders, particularly in neuronal cells. However, HSF1 activity declines with age, a change that may open the door to progression of neurodegenerative disorders such as Huntington's disease. We have investigated mechanisms of HSF1 regulation that may become compromised with age. HSF1 binds stably to the catalytic domain of protein kinase A (PKAcα) and becomes phosphorylated on at least one regulatory serine residue (S320). We show here that PKA is essential for effective transcription of HSP genes by HSF1. PKA triggers a cascade involving HSF1 binding to the histone acetylase p300 and positive translation elongation factor 1 (p-TEFb) and phosphorylation of the c-terminal domain of RNA polymerase II, a key mechanism in the downstream steps of HSF1-mediated transcription. This cascade appears to play a key role in protein quality control in neuronal cells expressing aggregation-prone proteins with long poly-glutamine (poly-Q) tracts. Such proteins formed inclusion bodies that could be resolved by HSF1 activation during heat shock. Resolution of the inclusions was inhibited by knockdown of HSF1, PKAcα, or the pTEFb component CDK9, indicating a key role for the HSF1-PKA cascade in protein quality control

    Phylogenomic classification and the evolution of Clonal complex 5 methicillin-resistant Staphylococcus aureus in the Western Hemisphere

    Get PDF
    Clonal complex 5 methicillin-resistant Staphylococcus aureus (CC5-MRSA) includes multiple prevalent clones that cause hospital-associated infections in the Western Hemisphere. Here, we present a phylogenomic study of these MRSA to reveal their phylogeny, spatial and temporal population structure, and the evolution of selected traits. We studied 598 genome sequences, including 409 newly generated sequences, from 11 countries in Central, North, and South America, and references from Asia and Europe. An early-branching CC5-Basal clade is well-dispersed geographically, is methicillin-susceptible and MRSA predominantly of ST5-IV such as the USA800 clone, and includes separate subclades for avian and porcine strains. In the early 1970s and early 1960s, respectively, two clades appeared that subsequently underwent major expansions in the Western Hemisphere: a CC5-I clade in South America and a CC5-II clade largely in Central and North America. The CC5-I clade includes the ST5-I Chilean/Cordobes clone, and the ST228-I South German clone as an early offshoot, but is distinct from other ST5-I clones from Europe that nest within CC5-Basal. The CC5-II clade includes divergent strains of the ST5-II USA100 clone, various other clones, and most known vancomycin-resistant strains of S. aureus, but is distinct from ST5-II strain N315 from Japan that nests within CC5-Basal. The recombination rate of CC5 was much lower than has been reported for other S. aureus genetic backgrounds, which indicates that recurrence of vancomycin resistance in CC5 is not likely due to an enhanced promiscuity. An increased number of antibiotic resistances and decreased number of toxins with distance from the CC5 tree root were observed. Of note, the expansions of the CC5-I and CC5-II clades in the Western Hemisphere were preceded by convergent gains of resistance to fluoroquinolone, macrolide, and lincosamide antibiotics, and convergent losses of the staphylococcal enterotoxin p (sep) gene from the immune evasion gene cluster of phage ΦSa3. Unique losses of surface proteins were also noted for these two clades. In summary, our study has determined the relationships of different clades and clones of CC5 and has revealed genomic changes for increased antibiotic resistance and decreased virulence associated with the expansions of these MRSA in the Western Hemisphere.Fil: Challagundla, Lavanya. University of Mississippi; Estados UnidosFil: Reyes, Jinnethe. Universidad El Bosque; ColombiaFil: Rafiqullah, Iftekhar. University of Mississippi; Estados UnidosFil: Sordelli, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Echaniz-Aviles, Gabriela. Instituto Nacional de Salud Pùblica; MéxicoFil: Velazquez-Meza, Maria E.. Instituto Nacional de Salud Pública; MéxicoFil: Castillo-Ramírez, Santiago. Universidad Nacional Autónoma de México; MéxicoFil: Fittipaldi, Nahuel. University of Toronto; Canadá. Public Health Ontario Laboratory; CanadáFil: Feldgarden, Michael. National Institutes of Health; Estados UnidosFil: Chapman, Sinéad B.. Broad Institute of MIT and Harvard; Estados UnidosFil: Calderwood, Michael S.. Dartmouth–Hitchcock Medical Center; Estados UnidosFil: Carvajal, Lina P.. Universidad El Bosque; ColombiaFil: Rincon, Sandra. Universidad El Bosque; ColombiaFil: Blake, Hanson. University of Texas; Estados UnidosFil: Planet, Paul J.. University of Pennsylvania; Estados UnidosFil: Arias, Cesar A.. Universidad El Bosque; Colombia. University of Texas; Estados UnidosFil: Diaz, Lorena. Universidad El Bosque; ColombiaFil: Robinson, D. Ashley. University of Mississippi; Estados Unido
    • …
    corecore