384 research outputs found

    Financial Constraints and Foreign Market Entries or Exits: Firm-Level Evidence from France

    Get PDF
    This paper studies the effect of credit constraints on the expansion and survival of firms in foreign markets. It develops a model in which, lower access to external finance, or reduced internal liquidity, hampers the firm ability to finance the recurrent costs to serve foreign markets and decreases firm survival in foreign markets. Additionally, financial constraints act as a barrier to firm export expansion by decreasing the firm ability to finance the entry costs into new export markets; thus, they push firm to avoid losing destinations. We use a unique longitudinal dataset on French firms that contains information on export destinations of individual firms and allows us to construct various firm-level measures of financial constraints to test these predictions. We obtain two main results. First, credit constraints have a negative effect on the number of newly served destinations. Second, higher probability of exit from the export market is also associated with credit constraints; that is consistent with constraints limiting the financing of recurrent export costs.Firm heterogeneity, financial constraints, trade.

    Maintaining coherence in Quantum Computers

    Get PDF
    The effect of the inevitable coupling to external degrees of freedom of a quantum computer are examined. It is found that for quantum calculations (in which the maintenance of coherence over a large number of states is important), not only must the coupling be small but the time taken in the quantum calculation must be less than the thermal time scale, /kBT\hbar/k_B T. For longer times the condition on the strength of the coupling to the external world becomes much more stringent.Comment: 13 page

    Techno-economic comparison of buildings acting as Single-Self Consumers or as energy community through multiple economic scenarios

    Get PDF
    The European Union has set ambitious targets to move towards a society with high penetration of renewable energy sources. In the forthcoming energy transition, Energy Communities (EC), i.e., legal entities where different actors, including citizens, cooperate in energy generation, storage and management, will play a crucial role. The present work simulates the energy flows and assesses the potential economic benefits of a cluster of buildings acting collectively as an energy community – a specific case study is set in northern Italy by comparing the EC performance with a configuration where customers act as Single Self-Consumers (SSCs). Pending the transposition of EU Directives to binding national laws, due by 2021, different supporting tariffs (economic scenarios) have been simulated in order to determine which scheme will support more effectively the integration of Energy Communities in the national energy market. Results show that ECs (i.e., customers acting collectively as energy prosumers) are able to accelerate the diffusion of building-integrated renewable energy sources (RES), resulting in higher overall self-consumption rates than SSCs. Self-consumed electricity generates savings on the energy bill of EC, and we calculated positive economic performance indicators for all the analysed economic scenarios. The sensitivity analysis carried out on system and transport charges of the electricity bill shows their remarkable impact on the economics making the EC less attractive for investors and citizens without proper supporting schemes

    EFFECTS OF ORCHIECTOMY ON EXPLORATORY BEHAVIOUR OF RATS

    Get PDF
    This study was designed to assess whether the testes influence theexploratory behaviour of rats. The results show that orchiectomyparameters of exploratory behaviour, namely the number of head dips,locomotory significantly impaired three activity and number of rears,when evaluated using the hole-board technique. The fourth parametertested, the time spent head dipping however remained unaltered.These findings suggest that some factor/s secreted by testes influenceexploratory behaviour.Key words: orchiectomy, exploratory behaviour, rat, hole-board technique

    Nanosponge-based composite gel polymer electrolyte for safer li-o2 batteries

    Get PDF
    Li-O2 batteries represent a promising rechargeable battery candidate to answer the energy challenges our world is facing, thanks to their ultrahigh theoretical energy density. However, the poor cycling stability of the Li-O2 system and, overall, important safety issues due to the formation of Li dendrites, combined with the use of organic liquid electrolytes and O2 cross-over, inhibit their practical applications. As a solution to these various issues, we propose a composite gel polymer electrolyte consisting of a highly cross-linked polymer matrix, containing a dextrin-based nanosponge and activated with a liquid electrolyte. The polymer matrix, easily obtained by thermally activated one pot free radical polymerization in bulk, allows to limit dendrite nucleation and growth thanks to its cross-linked structure. At the same time, the nanosponge limits the O2 cross-over and avoids the formation of crystalline domains in the polymer matrix, which, combined with the liquid electrolyte, allows a good ionic conductivity at room temperature. Such a composite gel polymer electrolyte, tested in a cell containing Li metal as anode and a simple commercial gas diffusion layer, without any catalyst, as cathode demonstrates a full capacity of 5.05 mAh cm−2 as well as improved reversibility upon cycling, compared to a cell containing liquid electrolyte

    Simultaneous Grafting of Poly(Acrylic Acid) and Poly(Ethylene Glycol) onto Chitosan using Gamma Radiation: Polymer Networks for Removal of Textile Dyes

    Get PDF
    Chitosan is a bio-based polyelectrolyte with high potential for wastewater treatment. Chitosan can remove anionic dyes by adsorption but it has low performance in the removal of cationic dyes. In this work, we report the synthesis of chitosan-based graft-copolymers using gamma radiation. Acrylic acid and poly(ethylene glycol) were grafted successfully onto chitosan applying a radiation dose of 12 kGy at a dose rate of 8 kGyh-1. The grafted-copolymers have improved adsorptive properties for the removal of basic dyes reaching a maximum adsorption capacity higher than 300 mgg-1. The Lanmguir’s isotherm model described satisfactorily the interaction between the grafted copolymers and basic dyes. Freundlich’s isotherm model described the adsorption of anionic dye acid orange 52. The grafted copolymers removed successfully textile dyes from wastewater of the dyeing process. The best results were obtained in the removal of direct and basic dyes. Further, poly(ethylene glycol) grafted on the copolymer conferred better swelling behavior making easy the separation of the adsorbent after dye removal. The results showed that the adsorbent materials synthesized by radiochemical graftcopolymerization are more efficient than the beads, composite materials, and blends of chitosan

    Graft-Copolymerization of Acrylate Monomers onto Chitosan Induced by Gamma Radiation: Amphiphilic Polymers and Their Behavior at The Air-Water Interface

    Get PDF
    Graft polymerization induced by ionizing radiation is a powerful tool in materials science to modifying the physical properties of polymers. Chitosan is a biocompatible, biodegradable, antibacterial, and highly hydrophilic polysaccharide. In this work, we report the obtaining of amphiphilic polymers through graft polymerization of acrylic monomers (methyl acrylate, t-butyl acrylate, and hexyl acrylate) onto chitosan. The polymerization reaction was carried out by simultaneous irradiation of monomers and chitosan using a gamma radiation source of 60Co. The formation of Langmuir films of amphiphilic polymers was studied at the air-water interface through surface pressure versus main molecular area isotherms (Π-A) and hysteresis cycles of compression and decompression. Finally, it was analyzed the transferring of Langmuir films towards solid substrates to obtaining Langmuir-Blodgett films with potential application as an antibacterial coating. The microstructure of the Langmuir-Blodgett films was characterized by AFM microscopy observing a regular topography with roughness ranging between 0.53 and 0.6 μm

    Dark Coupling and Gauge Invariance

    Get PDF
    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.Comment: 16 pages, 2 figures, version accepted for publication in JCA

    Host Patch Traits Have Scale‐Dependent Effects On Diversity In A Stickleback Parasite Metacommunity

    Get PDF
    Many metacommunities are distributed across habitat patches that are themselves aggregated into groups. Perhaps the clearest example of this nested metacommunity structure comes from multi‐species parasite assemblages, which occupy individual hosts that are aggregated into host populations. At both spatial scales, we expect parasite community diversity in a given patch (either individual host or population) to depend on patch characteristics that affect colonization rates and species sorting. But, are these patch effects consistent across spatial scales? Or, do different processes govern the distribution of parasite community diversity among individual hosts, versus among host patches? To answer these questions, we document the distribution of parasite richness among host individuals and among populations in a metapopulation of threespine stickleback Gasterosteus aculeatus. We find some host traits (host size, gape width) are associated with increased parasite richness at both spatial scales. Other patch characteristics affect parasite richness only among individuals (sex), or among populations (lake size, lake area, elevation and population mean heterozygosity). These results demonstrate that some rules governing parasite richness in this metacommunity are shared across scales, while others are scale‐specific

    Dark Interactions and Cosmological Fine-Tuning

    Full text link
    Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the Λ\LambdaCDM model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme, this paper aims to unite these different approaches and shed some light as to whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.Comment: 13 pages, 9 figures, accepted for publication in JCAP. Minor corrections, one figure replaced, references adde
    corecore