6 research outputs found

    Calibration of the comprehensive NDHA-N<sub>2</sub>O dynamics model for nitrifier-enriched biomass using targeted respirometric assays

    Get PDF
    The NDHA model comprehensively describes nitrous oxide (N2O) producing pathways by both autotrophic ammonium oxidizing and heterotrophic bacteria. The model was calibrated via a set of targeted extant respirometric assays using enriched nitrifying biomass from a lab-scale reactor. Biomass response to ammonium, hydroxylamine, nitrite and N2O additions under aerobic and anaerobic conditions were tracked with continuous measurement of dissolved oxygen (DO) and N2O. The sequential addition of substrate pulses allowed the isolation of oxygen-consuming processes. The parameters to be estimated were determined by the information content of the datasets using identifiability analysis. Dynamic DO profiles were used to calibrate five parameters corresponding to endogenous, nitrite oxidation and ammonium oxidation processes. The subsequent N2O calibration was not significantly affected by the uncertainty propagated from the DO calibration because of the high accuracy of the estimates. Five parameters describing the individual contribution of three biological N2O pathways were estimated accurately (variance/mean < 10% for all estimated parameters). The NDHA model response was evaluated with statistical metrics (F-test, autocorrelation function). The 95% confidence intervals of DO and N2O predictions based on the uncertainty obtained during calibration are studied for the first time. The measured data fall within the 95% confidence interval of the predictions, indicating a good model description. Overall, accurate parameter estimation and identifiability analysis of ammonium removal significantly decreases the uncertainty propagated to N2O production, which is expected to benefit N2O model discrimination studies and reliable full scale applications.Comment: Main text (27 pages, 7 figures, 2 tables) and Supplementary Information (25 pages, 10 sections

    Environmental variability in aquatic ecosystems: Avenues for future multifactorial experiments

    Get PDF
    The relevance of considering environmental variability for understanding and predicting biological responses to environmental changes has resulted in a recent surge in variability-focused ecological research. However, integration of findings that emerge across studies and identification of remaining knowledge gaps in aquatic ecosystems remain critical. Here, we address these aspects by: (1) summarizing relevant terms of variability research including the components (characteristics) of variability and key interactions when considering multiple environmental factors; (2) identifying conceptual frameworks for understanding the consequences of environmental variability in single and multifactorial scenarios; (3) highlighting challenges for bridging theoretical and experimental studies involving transitioning from simple to more complex scenarios; (4) proposing improved approaches to overcome current mismatches between theoretical predictions and experimental observations; and (5) providing a guide for designing integrated experiments across multiple scales, degrees of control, and complexity in light of their specific strengths and limitations

    Effects of Consecutive Extreme Weather Events on a Temperate Dystrophic Lake: A Detailed Insight into Physical, Chemical and Biological Responses

    No full text
    Between May and July 2018, Ireland experienced an exceptional heat wave, which broke long-term temperature and drought records. These calm, stable conditions were abruptly interrupted by a second extreme weather event, Atlantic Storm Hector, in late June. Using high-frequency monitoring data, coupled with fortnightly biological sampling, we show that the storm directly affected the stratification pattern of Lough Feeagh, resulting in an intense mixing event. The lake restabilised quickly after the storm as the heatwave continued. During the storm there was a three-fold reduction in Schmidt stability, with a mixed layer deepening of 9.5 m coinciding with a two-fold reduction in chlorophyll a but a three-fold increase in total zooplankton biomass. Epilimnetic respiration increased and net ecosystem productivity decreased. The ratio of total nitrogen:total phosphorus from in-lake versus inflow rivers was decoupled, leading to a cascade effect on higher trophic levels. A step change in nitrogen:phosphorus imbalances suggested that the zooplankton community shifted from phosphorus to nitrogen nutrient constraints. Such characterisations of both lake thermal and ecological responses to extreme weather events are relatively rare but are crucial to our understanding of how lakes are changing as the impacts of global climate change accelerate

    Environmental variability in aquatic ecosystems: Avenues for future multifactorial experiments

    No full text
    International audienceThe relevance of considering environmental variability for understanding and predicting biological responses to environmental changes has resulted in a recent surge in variability-focused ecological research. However, integration of findings that emerge across studies and identification of remaining knowledge gaps in aquatic ecosystems remain critical. Here, we address these aspects by: (1) summarizing relevant terms of variability research including the components (characteristics) of variability and key interactions when considering multiple environmental factors; (2) identifying conceptual frameworks for understanding the consequences of environmental variability in single and multifactorial scenarios; (3) highlighting challenges for bridging theoretical and experimental studies involving transitioning from simple to more complex scenarios; (4) proposing improved approaches to overcome current mismatches between theoretical predictions and experimental observations; and (5) providing a guide for designing integrated experiments across multiple scales, degrees of control, and complexity in light of their specific strengths and limitations

    Environmental variability in aquatic ecosystems : Avenues for future multifactorial experiments

    No full text
    The relevance of considering environmental variability for understanding and predicting biological responses to environmental changes has resulted in a recent surge in variability-focused ecological research. However, integration of findings that emerge across studies and identification of remaining knowledge gaps in aquatic ecosystems remain critical. Here, we address these aspects by: (1) summarizing relevant terms of variability research including the components (characteristics) of variability and key interactions when considering multiple environmental factors; (2) identifying conceptual frameworks for understanding the consequences of environmental variability in single and multifactorial scenarios; (3) highlighting challenges for bridging theoretical and experimental studies involving transitioning from simple to more complex scenarios; (4) proposing improved approaches to overcome current mismatches between theoretical predictions and experimental observations; and (5) providing a guide for designing integrated experiments across multiple scales, degrees of control, and complexity in light of their specific strengths and limitations

    Environmental variability in aquatic ecosystems: Avenues for future multifactorial experiments

    No full text
    Abstract The relevance of considering environmental variability for understanding and predicting biological responses to environmental changes has resulted in a recent surge in variability‐focused ecological research. However, integration of findings that emerge across studies and identification of remaining knowledge gaps in aquatic ecosystems remain critical. Here, we address these aspects by: (1) summarizing relevant terms of variability research including the components (characteristics) of variability and key interactions when considering multiple environmental factors; (2) identifying conceptual frameworks for understanding the consequences of environmental variability in single and multifactorial scenarios; (3) highlighting challenges for bridging theoretical and experimental studies involving transitioning from simple to more complex scenarios; (4) proposing improved approaches to overcome current mismatches between theoretical predictions and experimental observations; and (5) providing a guide for designing integrated experiments across multiple scales, degrees of control, and complexity in light of their specific strengths and limitations
    corecore