1,990 research outputs found

    Biogeochemical modeling at mass extinction boundaries

    Get PDF
    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations

    Ocean alkalinity and the Cretaceous/Tertiary boundary

    Get PDF
    A biogeochemical cycle model resolving ocean carbon and alkalinity content is applied to the Maestrichtian and Danian. The model computes oceanic concentrations and distributions of Ca(2+), Mg(2+), and Sigma-CO2. From these values an atmospheric pCO2 value is calculated, which is used to estimate rates of terrestrial weathering of calcite, dolomite, and calcium and magnesium silicates. Metamorphism of carbonate rocks and the subsequent outgassing of CO2 to the atmosphere are parameterized in terms of carbonate rock reservoir sizes, total land area, and a measure of overall tectonic activity, the sea-floor generation rate. The ocean carbon reservoir computed by the model is used with Deep Sea Drilling Project (DSDP) C-13 data to estimate organic detrital fluxes under a variety of ocean mixing rate assumptions. Using Redfield ratios, the biogenic detrital flux estimate is used to partition the ocean carbon and alkalinity reservoirs between the mixed layer and deep ocean. The calcite flux estimate and carbonate ion concentrations are used to determine the rate of biologically mediated CaCO3 titration. Oceanic productivity was severely limited for approximately 500 kyr following the K/T boundary resulting in significant increases in total ocean alkalinity. As productivity returned to the ocean, excess carbon and alkalinity was removed from the ocean as CaCO3. Model runs indicate that this resulted in a transient imbalance in the other direction. Ocean chemistry returned to near-equilibrium by about 64 mybp

    Single-Spin Measurement and Decoherence in Magnetic Resonance Force Microscopy

    Get PDF
    We consider a simple version of a cyclic adiabatic inversion (CAI) technique in magnetic resonance force microscopy (MRFM). We study the problem: What component of the spin is measured in the CAI MRFM? We show that the non-destructive detection of the cantilever vibrations provides a measurement of the spin component along the effective magnetic field. This result is based on numerical simulations of the Hamiltonian dynamics (the Schrodinger equation) and the numerical solution of the master equation.Comment: 5 pages + 5 figures (PNG format

    Multiplicative Noise: Applications in Cosmology and Field Theory

    Full text link
    Physical situations involving multiplicative noise arise generically in cosmology and field theory. In this paper, the focus is first on exact nonlinear Langevin equations, appropriate in a cosmologica setting, for a system with one degree of freedom. The Langevin equations are derived using an appropriate time-dependent generalization of a model due to Zwanzig. These models are then extended to field theories and the generation of multiplicative noise in such a context is discussed. Important issues in both the cosmological and field theoretic cases are the fluctuation-dissipation relations and the relaxation time scale. Of some importance in cosmology is the fact that multiplicative noise can substantially reduce the relaxation time. In the field theoretic context such a noise can lead to a significant enhancement in the nucleation rate of topological defects.Comment: 21 pages, LaTex, LA-UR-93-210

    Fluctuation-dissipation theorem and quantum tunneling with dissipation

    Get PDF
    We suggest to take the fluctuation-dissipation theorem of Callen and Welton as a basis to study quantum dissipative phenomena (such as macroscopic quantum tunneling) in a manner analogous to the Nambu-Goldstone theorem for spontaneous symmetry breakdown. It is shown that the essential physical contents of the Caldeira-Leggett model such as the suppression of quantum coherence by Ohmic dissipation are derived from general principles only, namely, the fluctuation-dissipation theorem and unitarity and causality (i.e., dispersion relations), without referring to an explicit form of the Lagrangian. An interesting connection between quantum tunneling with Ohmic dissipation and the Anderson's orthogonality theorem is also noted.Comment: To appear in Phys. Rev.

    Micropropagation of a recalcitrant pine (Pinus pinea L.): An overview of the effects of ectomycorrhizal inoculation

    Get PDF
    Stone pine (Pinus pinea L.) is an economically important forest species in some regions of Iberian Peninsula. Portugal and Spain have nearly 500,000 ha of stone pine stands, representing 85% of worldwide distribution. The main use of this species is for the production of seeds (pinion) for food industry. In addition to its enormous profitability as a producer of seeds, it has beneficial impact on soil protection, dunes fixation and is a pioneer species particularly for cork and holm oaks degraded ecosystems. Stone pine plantations are today a major source of income for forestry holdings. Investments have targeted breeding, reforestation, forest management and harvesting. The maternal inheritance of desirable characteristics such as cone weight, number of seeds per cone and seed length is considerably high in this species thus encouraging the selection of seeds from “plus” trees. The selected trees have been propagated by grafting and micropropagation. However, grafting generates high variability due to scion-rootstock interaction that varies production levels. The production of clonal plants from selected seeds by micropropagation techniques has advanced very slowly due to the recalcitrance of this species in tissue culture and particularly to adventitious rooting of microshoots. Due to the tremendous importance of developing a reproducible tissue culture method for clonal propagation, a study has been carried out for over a decade to enhance rooting and acclimation. During this period of time, continuous increments in the multiplication rate and rooting frequency were achieved by introducing variations in culture media composition and conditions. Auxins, carbohydrates, light quality and duration, temperature at different concentrations and levels as well as compounds such as coumarin; salicylic acid, polyamines, etc. were tested for induction and expression phases of adventitious rooting. Despite these efforts, microshoots regenerated through organogenesis from mature embryo cotyledons failed to root or to have sustained root growth. At this point, an in vitro co-culture technique of stone pine microshoots with ectomycorrhizal-fungi was introduced to overcome the adventitious root growth cessation in vitro and improve root development during acclimation phase. An overview of the results showing the positive effect of fungal inoculation in promoting root growth in vitro and on plantlet survival during acclimation will be presented. Preliminary results of biochemical signals between Pinus pinea/Pisolithus arhizus during early steps of in vitro culture detected by liquid chromatography-mass spectrometry that might be responsible for the positive effect on root growth will be also presented

    Fluctuation-dissipation theorem and quantum tunneling with dissipation at finite temperature

    Get PDF
    A reformulation of the fluctuation-dissipation theorem of Callen and Welton is presented in such a manner that the basic idea of Feynman-Vernon and Caldeira -Leggett of using an infinite number of oscillators to simulate the dissipative medium is realized manifestly without actually introducing oscillators. If one assumes the existence of a well defined dissipative coefficient R(ω)R(\omega) which little depends on the temperature in the energy region we are interested in, the spontanous and induced emissions as well as induced absorption of these effective oscillators with correct Bose distribution automatically appears. Combined with a dispersion relation, we reproduce the tunneling formula in the presence of dissipation at finite temperature without referring to an explicit model Lagrangian. The fluctuation-dissipation theorem of Callen-Welton is also generalized to the fermionic dissipation (or fluctuation) which allows a transparent physical interpretation in terms of second quantized fermionic oscillators. This fermionic version of fluctuation-dissipation theorem may become relevant in the analyses of, for example, fermion radiation from a black hole and also supersymmetry at the early universe.Comment: 19 pages. Phys. Rev. E (in press

    NMR linewidth and Skyrmion localization in quantum Hall ferromagnets

    Get PDF
    The non-monotonic behavior of the NMR signal linewidth in the 2D quantum Hall system is explained in terms of the interplay between skyrmions localization, due to the influence of disorder, and the non-trivial temperature dependent skyrmion dynamics.Comment: 5 pages, 2 figure

    Localization on short-range potentials in dissipative quantum mechanics

    Full text link
    In this Letter the problem of the existence of a state localized on a weak short-range attractive potential in the presence of dissipation is considered. It is shown that, contrary to the pure quantum case, a localized state is produced in any number of dimensions, while in low dimensions dissipation leads to much stronger localization. The results have physical implications for the dissipative dynamics of objects such as heavy particles in Fermi liquids and for superconductivity in high-TcT_c materials.Comment: RevTeX, 4 pages, 1 figure. Published versio
    • …
    corecore