29 research outputs found

    Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies

    Get PDF
    One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human brain. To achieve this goal, we performed an activation likelihood estimation (ALE) meta-analysis of 87 studies (1452 subjects) comparing the brain responses to monetary, erotic and food reward outcomes. Those three rewards robustly engaged a common brain network including the ventromedial prefrontal cortex, ventral striatum, amygdala, anterior insula and mediodorsal thalamus, although with some variations in the intensity and location of peak activity. Money-specific responses were further observed in the most anterior portion of the orbitofrontal cortex, supporting the idea that abstract secondary rewards are represented in evolutionary more recent brain regions. In contrast, food and erotic (i.e. primary) rewards were more strongly represented in the anterior insula, while erotic stimuli elicited particularly robust responses in the amygdala. Together, these results indicate that the computation of experienced reward value does not only recruit a core "reward system" but also reward type-dependent brain structures

    Improving Reading Skills Using a Computerized Phonological Training Program in Early Readers with Reading Difficulties

    Get PDF
    In the last years, there has been a big effort to identify risk factors for reading difficulties and to develop new methodologies to help struggling readers. It has been shown that early intervention is more successful than late intervention, and that intensive training programs can benefit children with reading difficulties. The aim of our study is to investigate the effectiveness of an intensive computerized phonological training program designed to improve reading performance in a sample of children with reading difficulties at the early stages of their reading learning process. Thirty-two children with reading difficulties were randomly assigned to one of the two intervention groups: RDIR (children with reading difficulties following a computerized intensive remediation strategy) (n = 20) (7.01 +/- 0.69 years), focused on training phonemic awareness, decoding and reading fluency through the computational training; and RDOR (children with reading difficulties following an ordinary remediation strategy) (n = 12) (6.92 +/- 0.82 years), which consisted of a reinforcement of reading with a traditional training approach at school. Normal readers (NR) were assigned to the control group (n = 24) (7.32 +/- 0.66 years). Our results indicate that both the RDIR and RDOR groups showed an increased reading performance after the intervention. However, children in the RDIR group showed a stronger benefit than the children in the RDOR group, whose improvement was weaker. The control group did not show significant changes in reading performance during the same period. In conclusion, results suggest that intensive early intervention based on phonics training is an effective strategy to remediate reading difficulties, and that it can be used at school as the first approach to tackle such difficulties

    COVID-19 severity is related to poor executive function in people with post-COVID conditions

    Get PDF
    Coronavirus; Executive function; Neuropsychological testsCoronavirus; Función ejecutiva; Pruebas neuropsicológicasCoronavirus; Funció executiva; Tests neuropsicològicsPatients with post-coronavirus disease 2019 (COVID-19) conditions typically experience cognitive problems. Some studies have linked COVID-19 severity with long-term cognitive damage, while others did not observe such associations. This discrepancy can be attributed to methodological and sample variations. We aimed to clarify the relationship between COVID-19 severity and long-term cognitive outcomes and determine whether the initial symptomatology can predict long-term cognitive problems. Cognitive evaluations were performed on 109 healthy controls and 319 post-COVID individuals categorized into three groups according to the WHO clinical progression scale: severe-critical (n = 77), moderate-hospitalized (n = 73), and outpatients (n = 169). Principal component analysis was used to identify factors associated with symptoms in the acute-phase and cognitive domains. Analyses of variance and regression linear models were used to study intergroup differences and the relationship between initial symptomatology and long-term cognitive problems. The severe-critical group performed significantly worse than the control group in general cognition (Montreal Cognitive Assessment), executive function (Digit symbol, Trail Making Test B, phonetic fluency), and social cognition (Reading the Mind in the Eyes test). Five components of symptoms emerged from the principal component analysis: the "Neurologic/Pain/Dermatologic" "Digestive/Headache", "Respiratory/Fever/Fatigue/Psychiatric" and "Smell/ Taste" components were predictors of Montreal Cognitive Assessment scores; the "Neurologic/Pain/Dermatologic" component predicted attention and working memory; the "Neurologic/Pain/Dermatologic" and "Respiratory/Fever/Fatigue/Psychiatric" components predicted verbal memory, and the "Respiratory/Fever/Fatigue/Psychiatric," "Neurologic/Pain/Dermatologic," and "Digestive/Headache" components predicted executive function. Patients with severe COVID-19 exhibited persistent deficits in executive function. Several initial symptoms were predictors of long-term sequelae, indicating the role of systemic inflammation and neuroinflammation in the acute-phase symptoms of COVID-19." Study Registration: www.ClinicalTrials.gov , identifier NCT05307549 and NCT05307575

    Neuropsychological impairment in post-COVID condition individuals with and without cognitive complaints

    Get PDF
    COVID-19; Cognitive function; Neuropsychological testCOVID-19; Función cognitiva; Test neuropsicológicoCOVID-19; Funció cognitiva; Test neuropsicològicOne of the most prevalent symptoms of post-COVID condition is cognitive impairment, which results in a significant degree of disability and low quality of life. In studies with large sample sizes, attention, memory, and executive function were reported as long-term cognitive symptoms. This study aims to describe cognitive dysfunction in large post-COVID condition individuals, compare objective neuropsychological performance in those post-COVID condition individuals with and without cognitive complaints, and identify short cognitive exams that can differentiate individuals with post-COVID symptoms from controls. To address these aims, the Nautilus project was started in June 2021. During the first year, we collected 428 participants' data, including 319 post-COVID and 109 healthy controls (18-65 years old) from those who underwent a comprehensive neuropsychological battery for cognitive assessment. Scores on tests assessing global cognition, learning and long-term memory, processing speed, language and executive functions were significantly worse in the post-COVID condition group than in healthy controls. Montreal Cognitive Assessment, digit symbol test, and phonetic verbal fluency were significant in the binomial logistic regression model and could effectively distinguish patients from controls with good overall sensitivity and accuracy. Neuropsychological test results did not differ between those with and without cognitive complaints. Our research suggests that patients with post-COVID conditions experience significant cognitive impairment and that routine tests like the Montreal Cognitive Assessment, digit symbol, and phonetic verbal fluency test might identify cognitive impairment. Thus, the administration of these tests would be helpful for all patients with post-COVID-19 symptoms, regardless of whether cognitive complaints are present or absent

    Allostatic load and executive functions in overweight adults

    Get PDF
    Background/objective: Overweight is linked to inflammatory and neuroendocrine responses potentially prompting deregulations in biological systems harmful to the brain, particularly to the prefrontal cortex. This structure is crucial for executive performance, ultimately supervising behaviour. Thus, in the present work, we aimed to test the relationship between allostatic load increase, a surrogate of chronic physiological stress, and core executive functions, such as cognitive flexibility, inhibitory control, and working memory. Method Forty-seven healthy-weight and 56 overweight volunteers aged from 21 to 40 underwent medical and neuropsychological examination. Results: Overweight subjects exhibited a greater allostatic load index than healthy-weight individuals. Moreover, the allostatic load index was negatively related to inhibitory control. When separated, the link between allostatic load index and cognitive flexibility was more marked in the overweight group. Conclusions: An overweight status was linked to chronic physiological stress. The inverse relationship between the allostatic load index and cognitive flexibility proved stronger in this group. Set-shifting alterations could sustain rigid-like behaviours and attitudes towards food

    Bases cerebrales de la atención sostenida y la memoria de trabajo: un estudio de resonancia magnética funcional basado en el Continuous Performance Test

    Get PDF
    Introducción. Uno de los paradigmas más utilizados en el estudio de la atención es el Continuous Performance Test (CPT). La versión de pares idénticos (CPT-IP) se ha utilizado ampliamente para evaluar los déficits de atención en los trastornos del neurodesarrollo, neurológicos y psiquiátricos. Sin embargo, la localización de la activación cerebral de las redes atencionales varía significativamente según el diseño de resonancia magnética funcional (RMf) usado. Objetivo. Diseñar una tarea para evaluar la atención sostenida y la memoria de trabajo mediante RMf para proporcionar datos de investigación relacionados con la localización y el papel de estas funciones. Sujetos y métodos. El estudio contó con la participación de 40 estudiantes, todos ellos diestros (50%, mujeres; rango: 18-25 años). La tarea de CPT-IP se diseñó como una tarea de bloques, en la que se combinaban los períodos CPT-IP con los de reposo. Resultados. La tarea de CPT-IP utilizada activa una red formada por regiones frontales, parietales y occipitales, y éstas se relacionan con funciones ejecutivas y atencionales. Conclusiones. La tarea de CPT-IP utilizada en nuestro trabajo proporciona datos normativos en adultos sanos para el estudio del sustrato neural de la atención sostenida y la memoria de trabajo. Estos datos podrían ser útiles para evaluar trastornos que cursan con déficits en memoria de trabajo y en atención sostenida.Introduction. One of the most used paradigms in the study of attention is the Continuous Performance Test (CPT). The identical pairs version (CPT-IP) has been widely used to evaluate attention deficits in developmental, neurological and psychiatric disorders. However, the specific locations and the relative distribution of brain activation in networks identified with functional imaging, varies significantly with differences in task design. Aim. To design a task to evaluate sustained attention using functional magnetic resonance imaging (fMRI), and thus to provide data for research concerned with the role of these functions. Subjects and methods. Forty right-handed, healthy students (50% women; age range: 18-25 years) were recruited. A CPT-IP implemented as a block design was used to assess sustained attention during the fMRI session. Results. The behavioural results from the CPT-IP task showed a good performance in all subjects, higher than 80% of hits. fMRI results showed that the used CPT-IP task activates a network of frontal, parietal and occipital areas, and that these are related to executive and attentional functions. Conclusions. In relation to the use of the CPT to study of attention and working memory, this task provides normative data in healthy adults, and it could be useful to evaluate disorders which have attentional and working memory deficits

    Inflammatory agents partially explain associations between cortical thickness, surface area, and body mass in adolescents and young adulthood

    Get PDF
    Background/objectives Excessive body mass index (BMI) has been linked to a low-grade chronic inflammation state. Unhealthy BMI has also been related to neuroanatomical changes in adults. Research in adolescents is relatively limited and has produced conflicting results. This study aims to address the relationship between BMI and adolescents'brain structure as well as to test the role that inflammatory adipose-related agents might have over this putative link. Methods We studied structural MRI and serum levels of interleukin-6, tumor necrosis factor alpha (TNF-α), C-reactive protein and fibrinogen in 65 adolescents (aged 12-21 years). Relationships between BMI, cortical thickness and surface area were tested with a vertex-wise analysis. Subsequently, we used backward multiple linear regression models to explore the influence of inflammatory parameters in each brain-altered area. Results We found a negative association between cortical thickness and BMI in the left lateral occipital cortex (LOC) and the right precentral gyrus as well as a positive relationship between surface area and BMI in the left rostral middle frontal gyrus and the right superior frontal gyrus. In addition, we found that higher fibrinogen serum concentrations were related to thinning within the left LOC (β=−0.45,p< 0.001), while higher serum levels of TNF-αwere associated to a greater surface area in the right superior frontal gyrus (β=0.32,p=0.045). Besides, we have also identified a trend that negatively correlates the cortical thickness of the left fusiform gyrus with the increases in BMI. It was also associated to fibrinogen(β=−0.33,p=0.035). Conclusions These results suggest that adolescents'body mass increases are related with brain abnormalities in areas that could play a relevant role in some aspects of feeding behavior. Likewise, we have evidenced that these cortical changes were partially explained by inflammatory agents such as fibrinogen and TNF-α

    Allostatic Load Is Linked to Cortical Thickness Changes Depending on Body-Weight Status

    Get PDF
    Objective: Overweight (body mass index or BMI 25 kg/m2) and stress interact with each other in complex ways. Overweight promotes chronic low-inflammation states, while stress is known to mediate caloric intake. Both conditions are linked to several avoidable health problems and to cognitive decline, brain atrophy, and dementia. Since it was proposed as a framework for the onset of mental illness, the allostatic load model has received increasing attention. Although changes in health and cognition related to overweight and stress are well-documented separately, the association between allostatic load and brain integrity has not been addressed in depth, especially among overweight subjects. Method: Thirty-four healthy overweight-to-obese and 29 lean adults underwent blood testing, neuropsychological examination, and magnetic resonance imaging to assess the relationship between cortical thickness and allostatic load, represented as an index of 15 biomarkers (this is, systolic and diastolic arterial tension, glycated hemoglobin, glucose, creatinine, total cholesterol, HDL and LDL cholesterol, triglycerides, c-reactive protein, interleukin-6, insulin, cortisol, fibrinogen, and leptin). Results: Allostatic load indexes showed widespread positive and negative significant correlations (p < 0.01) with cortical thickness values depending on body-weight status. Conclusion: The increase of allostatic load is linked to changes in the gray matter composition of regions monitoring behavior, sensory-reward processing, and general cognitive function

    Allostatic load and disordered white matter microstructure in overweight adults

    Full text link
    Overweight and stress are both related to brain structural abnormalities. The allostatic load model states that frequent disruption of homeostasis is inherently linked to oxidative stress and inflammatory responses that in turn can damage the brain. However, the effects of the allostatic load on the central nervous system remain largely unknown. The current study aimed to assess the relationship between the allostatic load and the composition of whole-brain white matter tracts in overweight subjects. Additionally, we have also tested for grey matter changes regarding allostatic load increase. Thirty-one overweight-to-obese adults and 21 lean controls participated in the study. Our results showed that overweight participants presented higher allostatic load indexes. Such increases correlated with lower fractional anisotropy in the inferior fronto-occipital fasciculi and the right anterior corona radiata, as well as with grey matter reductions in the left precentral gyrus, the left lateral occipital gyrus, and the right pars opercularis. These results suggest that an otherwise healthy overweight status is linked to long-term biological changes potentially harmful to the brain

    Neuropsychological impairment in post-COVID condition individuals with and without cognitive complaints

    Get PDF
    One of the most prevalent symptoms of post-COVID condition is cognitive impairment, which results in a significant degree of disability and low quality of life. In studies with large sample sizes, attention, memory, and executive function were reported as long-term cognitive symptoms. This study aims to describe cognitive dysfunction in large post-COVID condition individuals, compare objective neuropsychological performance in those post-COVID condition individuals with and without cognitive complaints, and identify short cognitive exams that can differentiate individuals with post-COVID symptoms from controls. To address these aims, the Nautilus project was started in June 2021. During the first year, we collected 428 participants’ data, including 319 post-COVID and 109 healthy controls (18–65 years old) from those who underwent a comprehensive neuropsychological battery for cognitive assessment. Scores on tests assessing global cognition, learning and long-term memory, processing speed, language and executive functions were significantly worse in the post-COVID condition group than in healthy controls. Montreal Cognitive Assessment, digit symbol test, and phonetic verbal fluency were significant in the binomial logistic regression model and could effectively distinguish patients from controls with good overall sensitivity and accuracy. Neuropsychological test results did not differ between those with and without cognitive complaints. Our research suggests that patients with post-COVID conditions experience significant cognitive impairment and that routine tests like the Montreal Cognitive Assessment, digit symbol, and phonetic verbal fluency test might identify cognitive impairment. Thus, the administration of these tests would be helpful for all patients with post-COVID-19 symptoms, regardless of whether cognitive complaints are present or absent.Peer ReviewedNAUTILUS-Project Collaborative GroupPostprint (published version
    corecore