528 research outputs found

    Il Secondo Calvino: un discorso sul metodo

    Get PDF
    The essay reports, avoiding any prejudicial ideological mark, on the importance and richness in dialogue between literature and science adopted by Italo Calvino with the revolution of his cosmicomic short stories during the sixties, up to the philosophical prose of his most famous alter ego, Mr. Palomar; passing through the combinatorial attempts of the seventies (Città invisibili, Il castello dei destini incrociati, Se una notte d’inverno un viaggiatore). This monographic study represents an accurate “research on method” in order to highlight and rebuild the coordinates of what could be defined “the Calvino system” (pointing out the several virtuous meetings between literature and science into the second Calvino’s work): that system that, made him unappealable guilty under the critic seal of literary virtuosity and of the de-responsibility game. It is an effort to rehabilitate the concrete specific weight of the second calvinian season, escaping from a pre-constituted categorization (engagement, postmodernism, etc)

    Blunt Traumatic Aortic Injury

    Get PDF
    Traumatic aortic injuries represent a leading cause of death following motor-vehicular accidents. These injuries curry a very high mortality rate even though a significant number of patients reaches the hospital alive. These injuries are identified in the contest of a polytrauma work up and are almost always associated with multiple other severe traumatic injuries which makes the management of these patients very challenging. The technology advancements seen in recent years with radiologic imaging and the progress of the therapeutic options brought up by the uprise of endovascular therapy, along with the sophistication of the techniques of trauma resuscitation and intensive care management, have improved significantly the overall prognosis of these patients. Although traumatic aortic injuries need to be generally considered a life-threatening condition, their degree of severity may differ significantly from case to case requiring immediate repair in some patients, whereas their repair can be delayed in cases when the severity of the aortic injury does not represent an immediate threat to the patient life. Therefore, the challenge of treatment of the polytrauma patients with an aortic injury is to identify the best strategy of therapy able to prioritize the treatment of the injuries based on their lethal potential. In this contest, the ability of properly defining the severity of the aortic injury is the key-factor to allow the appropriate definition of a treatment strategy able to identify treatment priorities. In our experience, radiologic assessment of the aortic injury in correlation with the evaluation of clinical parameters and a comprehensive polytrauma assessment allows to optimize the ability of the trauma team to establish the most appropriate strategy for the care of this complex patients’ group

    Digital Image Correlation of Google Earth Images for Earth’s Surface Displacement Estimation

    Get PDF
    An increasing number of satellite platforms provide daily images of the Earth’s surface that can be used in quantitative monitoring applications. However, their cost and the need for specific processing software make such products not often suitable for rapid mapping and deformation tracking. Google Earth images have been used in a number of mapping applications and, due to their free and rapid accessibility, they have contributed to partially overcome this issue. However, their potential in Earth’s surface displacement tracking has not yet been explored. In this paper, that aspect is analyzed providing a specific procedure and related MATLAB™ code to derive displacement field maps using digital image correlation of successive Google Earth images. The suitability of the procedure and the potential of such images are demonstrated here through their application to two relevant case histories, namely the Slumgullion landslide in Colorado and the Miage debris-covered glacier in Italy. Result validation suggests the effectiveness of the proposed procedure in deriving Earth’s surface displacement data from Google Earth images

    Site effects due to the presence of cavity near the cliffs

    Get PDF
    The paper reports a numerical evaluation of seismic site effects from an underground cavity in Sant’Agata de’ Goti, a typical medieval town of south Italy, perched on a tuff ridge. The cavity, located along the edge of Martorano ridge and interconnected to the historical center, was analyzed with the 2D FLAC code. A dynamic analysis was carried out with seven spectrum compatible accelerograms according to Italian code. In order to distinguish the site effects, the analysis was done with and without the cavity. From comparison of the two cases, expressed by maximum acceleration on the ground surface, it was observed that the presence of the cavity leads to higher acceleration towards the edge of the cliff with respect to a 1D analysis and to simplified procedures according to the Italian National code

    Quaternary deformation in SE Sicily: Insights into the life and cycles of forebulge fault systems

    Get PDF
    Integrated geological, geomorphological, and differential interferometry synthetic aperture radar (DInSAR) data are used to constrain the timing and modes of activity of Quaternary fault systems in the Hyblean Plateau. This area, which represents a unique natural laboratory for studying surface deformation in relation to deep slab dynamics, has grown since middle Miocene times as a doubly plunging forebulge associated with slab rollback during NW-directed subduction. Bimodal extension has produced two mutually orthogonal normal fault systems. The detailed stratigraphic record provided by synrift sediments and postrift marine terraces allowed us to define the timing of activity of an early Pleistocene, flexure-related fault system, thus constraining the duration of a typical foreland extensional tectonic event to ~1.5 m.y. Subsequent late Quaternary to present deformation was dominated by strike-slip faulting associated with NW-oriented horizontal compression. During this latest stage, regional uplift progressively increased toward the thrust front to the NW and was accompanied by differential uplift accommodated by dip-slip components of motion along active NNW-trending faults. The general active tectonic setting of the study area, characterized by NW-oriented horizontal compression consistent with major plate convergence, and the regional uplift pattern can both be explained within the framework of intraplate shortening and foreland rebound following complete slab detachment, a major geodynamic event interpreted to have taken place at ca. 0.7 Ma in southern Italy

    Intermittent SBAS (ISBAS) InSAR with COSMO-SkyMed X-band high resolution SAR data for landslide inventory mapping in Piana degli Albanesi (Italy)

    Get PDF
    In the context of recent advances in InSAR processing techniques to retrieve higher persistent scatterer and coherent target densities over unfavourable land cover classes, this study tests the Intermittent Small Baseline Subset (ISBAS) approach to update the landslide inventory around the town of Piana degli Albanesi (Italy), an area where only 2% of the land appears suitable to generate radar scatterers based on a pre-survey feasibility assessment. ISBAS processing of 38 ascending mode and 36 descending mode COSMO-SkyMed StripMap HIMAGE SAR scenes at 3m resolution allows identification of ~726,000 and ~893,000 coherent and intermittently coherent pixels for the ascending and descending data stacks respectively. Observed improvements in the number of ISBAS solutions for the ascending mode are greater than 40 times compared to the conventional SBAS approach, not only for urban and rocky terrains, but also rural and vegetated land covers. Line of sight ground motion rates range between -6.4 and +5.5 mm/yr in 2008-2011, although the majority of the processed area shows general stability, with average rates of -0.6 mm/yr in the ascending and -0.1 mm/yr in the descending mode results. Interpretation of the ISBAS deformation rates, integrated with targeted field surveys and aerial photo-interpretation, provides a new and more complete picture of landslide distribution, state of activity and intensity in the test area, and allows depiction of very slow and extremely slow landslide processes even in areas difficult to access, with unprecedented coverage of results. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis

    Get PDF
    Persistent Scatterers Interferometry (PSI) represents one of the most powerful techniques for Earth's surface deformation processes' monitoring, especially for long-term evolution phenomena. In this work, a dataset of 34 TerraSAR-X StripMap images (October 2013–October 2014) has been processed by two PSI techniques - Coherent Pixel Technique-Temporal Sublook Coherence (CPT-TSC) and Small Baseline Subset (SBAS) - in order to study the evolution of a slow-moving landslide which occurred on February 23, 2012 in the Papanice hamlet (Crotone municipality, southern Italy) and induced by a significant rainfall event (185 mm in three days). The mass movement caused structural damage (buildings' collapse), and destruction of utility lines (gas, water and electricity) and roads. The results showed analogous displacement rates (30–40 mm/yr along the Line of Sight – LOS-of the satellite) with respect to the pre-failure phase (2008–2010) analyzed in previous works. Both approaches allowed detect the landslide-affected area, however the higher density of targets identified by means of CPT-TSC enabled to analyze in detail the slope behavior in order to design possible mitigation interventions. For this aim, a slope stability analysis has been carried out, considering the comparison between groundwater oscillations and time-series of displacement. Hence, the crucial role of the interaction between rainfall and groundwater level has been inferred for the landslide triggering. In conclusion, we showed that the integration of geotechnical and remote sensing approaches can be seen as the best practice to support stakeholders to design remedial works.Peer ReviewedPostprint (author's final draft

    PS-driven inventory of town-damaging landslides in the Benevento, Avellino and Salerno Provinces, southern Italy

    Get PDF
    The Apennine provinces of Campania Region (southern Italy), Benevento, Avellino and Salerno, are known for their 'unstable towns' suffering periodic damage from landslides. Their identification and mapping are very challenging tasks, since boundary mapping under urban settlements is not always possible without time-consuming field analysis of building damage and/or expensive mid-term diffuse ground-surface deformation monitoring. To overcome this problem, an inventory of town-damaging landslides, guided by available Permanent Scatterers (PS) ground-deformation data, was prepared. It provides an updated tool suitable to guide future land planning and historical site restoration in the Apennine provinces of Campania Region. Our fourteen Map Sheets show active and local reactivation of suspended/dormant landslides. Overall, 356 landslides were identified, amongst which 162 were identified as flows, 101 as slides, 1 as a spreads and 92 as complex landslides. To supplement our maps, a simplified distribution analysis based on major landslide morphometric characteristics was completed

    Monitoring of remedial works performance on landslide-affected areas through ground- and satellite-based techniques

    Get PDF
    Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques have repeatedly proved to be an effective tool for built environments monitoring in areas affected by geological hazards. This paper describes how the Coherent Pixel Technique (CPT) approach has been successfully applied to assess the response of an unstable slope to the different phases of remedial works following a landslide event. The CPT technique was performed on 59 COSMO-SkyMed images obtained between May 2011 and August 2016 and centred on the Quercianella settlement (a small hamlet of Livorno municipality, Tuscany, Italy), where the reactivation of a dormant shallow slide had occurred in March 2011 and, hereafter, a geotechnical intervention, designed with the aim of mitigating the risks, has been conducted from August 2013, lasting thirteen months. The time series of CPT results show a deformation pattern with sudden accelerations (up to 21 mm in few months) corresponding to the beginning of the interventions, during which the area has been excavated to install a drainage well, followed by mild decelerations resulting from the stabilization of the area after the conclusion of the works. In particular, the integration of ground-based subsurface monitoring (inclinometers and piezometers) and DInSAR superficial data has provided consistent results for landslide characterization and helped defining the state of activity and the areal distribution of the sliding surface. Moreover, the performance of remedial works in the landslide-affected area has been observed, showing stabilization in the upper part of the hamlet and the ongoing movement in the lower part. The combined monitoring system also led the geotechnical company in charge of remedial works to design further stabilization works in order to preserve buildings and roads in the moving area. Therefore, the integration of remote sensing techniques and in situ instruments represents a timely and cost-efficient solution for intervention works monitoring, opening new perspectives on designing engineering solutions for the stabilization of unstable slopes
    • …
    corecore