67 research outputs found

    Energy harvesting from suspension system using regenerative force actuators

    Get PDF
    In this paper harvesting vibration energy from suspension is investigated. Theoretical values for the harvested energy are calculated. Experimental evaluation of the energy is performed using vehicle road simulation facilities. An excitation signal in the frequency range of 0.5Hz to 20Hz is applied to the vehicle and the harvested power is calculated. Experimental results give a maximum harvested power of 984.4 W at the highest frequency, which is close to the theoretically computed value of 1106 W, for each suspension. Application of Regenerative Force Actuators (RFA) is explored for harvesting the vibration energy and controlling vibration. It is shown that the harvested power increases with the value of the actuator constant.Peer reviewe

    Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling

    Get PDF
    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs

    Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    No full text
    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1(-/-) mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis

    Motor Fatigue Measurement by Distance-Induced Slow Down of Walking Speed in Multiple Sclerosis

    Get PDF
    Background: Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Objectives: To compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW+), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW). Methods: Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. Results: The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance !4000m. Conclusion: The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course

    Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation

    Get PDF
    Aims Premature cardiovascular events complicate chronic inflammatory conditions. Low-dose weekly methotrexate (MTX), the most widely used disease-modifying drug for rheumatoid arthritis (RA), reduces disease-associated cardiovascular mortality. MTX increases intracellular accumulation of adenosine monophosphate (AMP) and 5-aminoimidazole-4-carboxamide ribonucleotide which activates AMP-activated protein kinase (AMPK). We hypothesised that MTX specifically protects the vascular endothelium against inflammatory injury via induction of AMPK-regulated protective genes. Methods/results In the (NZW×BXSB)F1 murine model of inflammatory vasculopathy, MTX 1 mg/kg/week significantly reduced intramyocardial vasculopathy and attenuated end-organ damage. Studies of human umbilical vein endothelial cells (HUVEC) and arterial endothelial cells (HAEC) showed that therapeutically relevant concentrations of MTX phosphorylate AMPKαThr172, and induce cytoprotective genes including manganese superoxide dismutase (MnSOD) and haem oxygenase-1 (HO-1). These responses were preserved when HUVECs were pretreated with tumour necrosis factor-α to mimic dysfunctional endothelium. Furthermore, MTX protected against glucose deprivation-induced endothelial apoptosis. Mechanistically, MTX treatment led to cyclic AMP response element-binding protein (CREB)Ser133 phosphorylation, while AMPK depletion attenuated this response and the induction of MnSOD and HO-1. CREB siRNA inhibited upregulation of both cytoprotective genes by MTX, while chromatin immunoprecipitation demonstrated CREB binding to the MnSOD promoter in MTX-treated EC. Likewise, treatment of (NZW×BXSB)F1 mice with MTX enhanced AMPKαThr172 phosphorylation and MnSOD, and reduced aortic intercellular adhesion molecule-1 expression. Conclusions These data suggest that MTX therapeutically conditions vascular endothelium via activation of AMPK-CREB. We propose that this mechanism contributes to the protection against cardiovascular events seen in patients with RA treated with MTX

    Temporal Dissociation between Myeloperoxidase (MPO)-Modified LDL and MPO Elevations during Chronic Sleep Restriction and Recovery in Healthy Young Men

    Get PDF
    OBJECTIVES: Many studies have evaluated the ways in which sleep disturbances may influence inflammation and the possible links of this effect to cardiovascular risk. Our objective was to investigate the effects of chronic sleep restriction and recovery on several blood cardiovascular biomarkers. METHODS AND RESULTS: Nine healthy male non-smokers, aged 22-29 years, were admitted to the Sleep Laboratory for 11 days and nights under continuous electroencephalogram polysomnography. The study consisted of three baseline nights of 8 hours sleep (from 11 pm to 7 am), five sleep-restricted nights, during which sleep was allowed only between 1 am and 6 am, and three recovery nights of 8 hours sleep (11 pm to 7 am). Myeloperoxidase-modified low-density lipoprotein levels increased during the sleep-restricted period indicating an oxidative stress. A significant increase in the quantity of slow-wave sleep was measured during the first recovery night. After this first recovery night, insulin-like growth factor-1 levels increased and myeloperoxidase concentration peaked. CONCLUSIONS: We observed for the first time that sleep restriction and the recovery process are associated with differential changes in blood biomarkers of cardiovascular disease

    Barium Promotes Anchorage-Independent Growth and Invasion of Human HaCaT Keratinocytes via Activation of c-SRC Kinase

    Get PDF
    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5–50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5–5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro

    Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase

    Get PDF
    The complement cascade is crucial for clearance and control of invading pathogens, and as such is a key target for pathogen mediated host modulation. C3 is the central molecule of the complement cascade, and plays a vital role in opsonization of bacteria and recruitment of neutrophils to the site of infection. Streptococcal species have evolved multiple mechanisms to disrupt complement-mediated innate immunity, among which ScpA (C5a peptidase), a C5a inactivating enzyme, is widely conserved. Here we demonstrate for the first time that pyogenic streptococcal species are capable of cleaving C3, and identify C3 and C3a as novel substrates for the streptococcal ScpA, which are functionally inactivated as a result of cleavage 7 amino acids upstream of the natural C3 convertase. Cleavage of C3a by ScpA resulted in disruption of human neutrophil activation, phagocytosis and chemotaxis, while cleavage of C3 generated abnormally-sized C3a and C3b moieties with impaired function, in particular reducing C3 deposition on the bacterial surface. Despite clear effects on human complement, expression of ScpA reduced clearance of group A streptococci in vivo in wildtype and C5 deficient mice, and promoted systemic bacterial dissemination in mice that lacked both C3 and C5, suggesting an additional complement-independent role for ScpA in streptococcal pathogenesis. ScpA was shown to mediate streptococcal adhesion to both human epithelial and endothelial cells, consistent with a role in promoting bacterial invasion within the host. Taken together, these data show that ScpA is a multi-functional virulence factor with both complement-dependent and independent roles in streptococcal pathogenesis

    Endometrial mixed mullerian tumor with heterologous elements following tamoxifen therapy for breast cancer: a case report and literature review

    No full text
    Case: A 67-year-old multiparous woman received 20 mg tamoxifen daily for four years after surgical treatment of breast cancer. She presented with vaginal bleeding. Uterine curettage revealed a uterine MMT with heterologous elements. She was treated surgically with adjuvant radiotherapy. Tumor cells were found to be estrogen receptor negative and progesterone receptor positive. Uterine MMT may be linked to long term use of tamoxifen. A mechanism in developing MMT other than estrogen receptor pathway may be possible. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved
    • …
    corecore