510 research outputs found

    Inhibition of PaCaMKII-E isoform in the dorsal unpaired median neurosecretory cells of cockroach reduces nicotine- and clothianidin-induced currents

    Get PDF
    Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII), which transduces the signal into downstream effects. We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms, and only PaCaMKII-E isoform is specifically expressed in the dorsal unpaired median neurosecretory cells. In the present study, using antisense oligonucleotides, we demonstrated that PaCaMKII-E isoform inhibition reduced nicotine-induced currents through alpha-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptor subtypes. Specifically, PaCaMKII-E isoform is sufficient to repress nicotinic current amplitudes as a result of its depression by antisense oligonucleotides. Similar results were found using the neonicotinoid insecticide clothianidin, which acted as a full agonist of dorsal unpaired median neuron nicotinic acetylcholine receptors. Clothianidin current amplitudes are strongly reduced under bath application of PaCaMKII-E antisense oligonucleotides but no significant results are found with alpha-bungarotoxin co-applied, demonstrating that CaMKII-E isoform affects nicotine currents through alpha-bungarotoxin-sensitive and -insensitive receptor subtypes whereas clothianidin currents are reduced via alpha-bungarotoxin-insensitive receptors. In addition, we found that intracellular calcium increase induced by nicotine and clothianidin were reduced by PaCaMKII-E antisense oligonucleotides, demonstrating that intracellular calcium increase induced by nicotine and clothianidin are affected by PaCaMKII-E inhibition. Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII). We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms and only PaCaMKII-E isoform was specifically expressed in the dorsal unpaired median neurosecretory cells. Here we show that specific inhibition of PaCaMKII-E isoform is associated with a decrease in nicotine- and clothianidin-induced currents. In addition, analysis of calcium changes demonstrates that PaCaMKII-E inhibition induces a decrease in intracellular calcium concentration

    Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones

    Get PDF
    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide. The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step. The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid and a benzyl anion

    Rearranging the centromere of the human Y chromosome with φC31 integrase

    Get PDF
    We have investigated the ability of the integrase from the Streptomyces φC31 ‘phage to either delete or invert 1 Mb of DNA around the centromere of the human Y chromosome in chicken DT40 hybrid somatic cells. Reciprocal and conservative site-specific recombination was observed in 54% of cells expressing the integrase. The sites failed to recombine in the remaining cells because the sites had been damaged. The sequences of the damaged sites indicated that the damage arose as a result of repair of recombination intermediates by host cell pathways. The liability of recombination intermediates to damage is consistent with what is known about the mechanism of serine recombinase reactions. The structures of the products of the chromosome rearrangements were consistent with the published sequence of the Y chromosome indicating that the assembly of the highly repeated region between the sites is accurate to a resolution of about 50 kb. Mini-chromosomes lacking a centromere were not recovered which also suggested that neo-centromere formation occurs infrequently in vertebrate somatic cells. No ectopic recombination was observed between a φC31 integrase attB site and the chicken genome

    Molecular dynamics simulation of radiation damage in glasses

    Get PDF
    Molecular dynamics simulations of the ballistic effects arising from displacement cascades in glasses have been investigated in silica and in a SiO 2 -B 2 O 3 -Na 2 O glass. In both glasses the T-O-T′ angle (where T and T′ are network formers) diminishes, despite radiation causes opposite effects: while the ternary glass swells and silica becomes denser. We show that radiation-induced modifications of macroscopic glass properties result from structural change at medium/range, reflecting an increasing disorder and internal energy of the system. A local thermal quenching model is proposed to account for the effects of ballistic collisions. The core of a displacement cascade is heated by the passage of the projectile, then rapidly quenched, leading to a process that mimics a local thermal quenching. The observed changes in both the mechanical and structural properties of glasses eventually reach saturation at 2 10 18 α/g as the accumulated energy increases. The passage of a single projectile is sufficient to reach the maximum degree of damage, confirming the hypothesis postulated in the swelling model proposed by J.A.C. Marples

    Site-specific recombination in Schizosaccharomyces pombe and systematic assembly of a 400kb transgene array in mammalian cells using the integrase of Streptomyces phage ϕBT1

    Get PDF
    We have established the integrase of the Streptomyces phage ϕBT1 as a tool for eukaryotic genome manipulation. We show that the ϕBT1 integrase promotes efficient reciprocal and conservative site-specific recombination in vertebrate cells and in Schizosaccharomyces pombe, thus establishing the utility of this protein for genome manipulation in a wide range of eukaryotes. We show that the ϕBT1 integrase can be used in conjunction with Cre recombinase to promote the iterative integration of transgenic DNA. We describe five cycles of iterative integration of a candidate mouse centromeric sequence 80 kb in length into a human mini-chromosome within a human-Chinese hamster hybrid cell line. These results establish the generality of the iterative site-specific integration technique

    OMAE 2002-28083 ELASTOPLASTIC ANALYSIS OF THE RESIDUAL STRESS IN CHAIN LINKS

    Get PDF
    ABSTRACT Mooring lines of offshore oil exploitation platforms consist of long lengths of steel chain links, wire ropes and other accessories. Usually, these lines are designed for an operational life of about 20 years and periodic inspections are mandatory for monitoring the structural integrity of these components. The failure of a single element in a mooring line can cause incalculable environmental damage and severe economic losses. The ocean adverse environment loading produced by the combination of the wind, waves and currents leads to a complex alternate loading that can promote fatigue and crack propagation. Residual stress plays a preponderant part in the structural integrity of a mechanical component subjected to such loading. Offshore mooring line components as chain links enter in operation with a residual stress field created by the proof test dictated by offshore standards. However, the traditional design of such mechanical components does not consider the presence of residual stress. This study concerns about predict the residual stress field present in stud and studless chain links prior to operation to compare the fatigue life predicted by the traditional design methodology with the one predicted considering the residual stresses states present before operation. Numeric simulations with an elastoplastic finite element model are used to estimate the residual stress along the chain link that are present after the proof test and before operation. The results indicate that the presence of residual stresses modify significantly the fatigue life of the component. INTRODUCTION The continuous expansion of deepwater activities has resulted in increasing attention on the design of mooring system
    corecore