12 research outputs found

    Virtual and Augmented Reality in Basic and Advanced Life Support Training

    Get PDF
    The use of augmented reality (AR) and virtual reality (VR) for life support training is increasing. These technologies provide an immersive experience that supports learning in a safe and controlled environment. This review focuses on the use of AR and VR for emergency care training for health care providers, medical students, and nonprofessionals. In particular, we analyzed (1) serious games, nonimmersive games, both single-player and multiplayer; (2) VR tools ranging from semi-immersive to immersive virtual and mixed reality; and (3) AR applications. All the toolkits have been investigated in terms of application goals (training, assessment, or both), simulated procedures, and skills. The main goal of this work is to summarize and organize the findings of studies coming from multiple research areas in order to make them accessible to all the professionals involved in medical simulation. The analysis of the state-of-the-art technologies reveals that tools and studies related to the multiplayer experience, haptic feedback, and evaluation of user’s manual skills in the foregoing health care-related environments are still limited and require further investigation. Also, there is an additional need to conduct studies aimed at assessing whether AR/VR-based systems are superior or, at the minimum, comparable to traditional training methods

    Optical imaging of Tc-99m-based tracers: in vitro and in vivo results.

    Get PDF
    It has been recently shown that optical imaging (OI) methods can be used to image the in vivo biodistribution of several radiopharmaceuticals labeled with beta or alpha emitters. In this work particular attention has been focused on investigating the weaker optical signal induced by an almost pure gamma emitter like Tc-99m. Visible light emission measurements of a water solution containing Tc-99m were performed using a small animal OI system. A sequence of images was acquired for 24 h in order to study the decay of the luminescence signal. The difference between the luminescence decay half life and well-known Tc-99m half life was equal to 1%. in vivo imaging was performed by injecting one control nude mice with Tc-99m-MDP. Optical images obtained with equipment designed for bioluminescence imaging showed that a visible light emission was distinguishable and correctly localized in the bladder region where a higher concentration of Tc-99m-MDP was expected. The bladder to background ratio was always greater than 1. We conclude that the experimental data presented in this paper show that it is possible to detect in vivo luminescence optical photons induced by Tc-99m. This is important especially considering the large number of Tc-99m-based radiopharmaceutical currently available

    Revisão bibliográfica: impactos em áreas nativas da caatinga causadas pelas atividades econômicas e as técnicas de reflorestamento / Bibliographic review: impacts on native areas the caatinga caused by economic activities and reforestation techniques

    Get PDF
    O desmatamento é um problema ambiental de destaque para países com grandes áreas de florestas tropicais, como o Brasil. Esse processo que começou de forma insignificante e hoje tomou proporções preocupante na medida em que as alterações na vegetação no ar atmosférico na absortividade na refletividade, na permeabilidade do solo e nas águas que compõem a superfície. O Bioma Caatinga apresenta um desmatamento acelerado ocasionado a redução das chuvas, e com isso vem as alterações nos fatores climáticos que poderão alcançar um ponto crítico de irreversibilidade causando empobrecimento da flora e da fauna por causa da exploração e ao consumo de lenha nativa de forma ilegal e insustentável para fins domésticos e industriais. Entretanto, o objetivo do presente trabalho foi avaliar os impactos causados pelas atividades econômicas: como o desmatamento de áreas nativas da Caatinga para a produção de lenha e carvão vegetal, bem como identificar as técnicas de reflorestamento. Uma das formas de recuperar as áreas degradadas é através da interferência das atividades humanas utilizando as espécies nativas lenhosas pioneiras que aparecem com mais frequência neste bioma com a Mimosa tenuiflora, o Croton sonderianus, a Caesalpinea bracteosa, a Bauhinia cheilantha e o Combretum leprosum, gerando atividades lucrativas e sustentáveis. As atividades econômicas realizadas no bioma Caatinga tem ocasionado impactos no meio ambiente que comprometem a fauna e a flora e as técnicas de reflorestamento são escassas e ineficientes para atender a economia de forma sustentável, prejudicando o equilíbrio do ecossistema e a perca da biodiversidade para as futuras gerações

    Point-of-care brain ultrasound and transcranial doppler or color-coded doppler in critically ill neonates and children

    No full text
    point-of-care brain ultrasound and transcranial doppler or color-coded doppler is being increasingly used as an essential diagnostic and monitoring tool at the bedside of critically ill neonates and children. Brain ultrasound has already established as a cornerstone of daily practice in the management of the critically ill newborn for diagnosis and follow-up of the most common brain diseases, considering the easiness to insonate the brain through transfontanellar window. In critically ill children, doppler based techniques are used to assess cerebral hemodynamics in acute brain injury and recommended for screening patients suffering from sickle cell disease at risk for stroke. However, more evidence is needed regarding the accuracy of doppler based techniques for non-invasive estimation of cerebral perfusion pressure and intracranial pressure, as well as regarding the accuracy of brain ultrasound for diagnosis and monitoring of acute brain parenchyma alterations in children. This review is aimed at providing a comprehensive overview for clinicians of the technical, anatomical, and physiological basics for brain ultrasonography and transcranial doppler or color-coded doppler, and of the current status and future perspectives of their clinical applications in critically ill neonates and children.Conclusion: In critically ill neonates, brain ultrasound for diagnosis and follow-up of the most common cerebral pathologies of the neonatal period may be considered the standard of care. Data are needed about the possible role of doppler techniques for the assessment of cerebral perfusion and vasoreactivity of the critically ill neonate with open fontanelles. In pediatric critical care, doppler based techniques should be routinely adopted to assess and monitor cerebral hemodynamics. New technologies and more evidence are needed to improve the accuracy of brain ultrasound for the assessment of brain parenchyma of critically ill children with fibrous fontanelles.what is known:center dot In critically ill neonates, brain ultrasound for early diagnosis and follow-up of the most common cerebral and neurovascular pathologies of the neonatal period is a cornerstone of daily practice. In critically ill children, doppler-based techniques are more routinely used to assess cerebral hemodynamics and autoregulation after acute brain injury and to screen patients at risk for vasospasm or stroke (e.g., sickle cell diseases, right-to-left shunts).What is New:center dot In critically ill neonates, research is currently focusing on the use of novel high frequency probes, even higher than 10 MHz, especially for extremely preterm babies. Furthermore, data are needed about the role of doppler based techniques for the assessment of cerebral perfusion and vasoreactivity of the critically ill neonate with open fontanelles, also integrated with a non-invasive assessment of brain oxygenation. In pediatric critical care, new technologies should be developed to improve the accuracy of brain ultrasound for the assessment of brain parenchyma of critically ill children with fibrous fontanelles. Furthermore, large multicenter studies are needed to clarify role and accuracy of doppler-based techniques to assess cerebral perfusion pressure and its changes after treatment interventions

    Small animal optical multispectral Cerenkov tomography

    No full text
    A novel pre-clinical imaging modality called Cerenkov luminescence imaging (CLI) has been recently introduced for small animals in vivo imaging. CLI is based on the detection of optical Cerenkov radiation generated by beta particles as they travel into the animal tissues with energy greater than Cerenkov threshold. The main goal of this work is the development of a novel optical image reconstruction method called multi spectral Cerenkov luminescence tomography (msCLT). The starting point of the msCLT reconstruction scheme is a set of 2D planar images acquired using several narrow bandpass filters. Because of the different tissues absorption at different wavelengths this provide distinctive information content that can be used for image reconstruction. More precisely the msCLT algorithm is based on a regularized iterative non-negative scheme in order to find the unknown source intensity solution, the theoretical Cerenkov emission spectrum was also included in the algorithm. In order to investigate the performances of the msCLT approach in vitro and in vivo imaging using 32P-ATP were performed by using the IVIS 200 (Caliper, a PerkinElmer company). A set of spatial resolution measurements were performed using a small capillary source placed between several slices of chicken breast at different depths. The spatial resolution obtained from the msCLT reconstructed images of the capillary showed that the FWHM is 1.5 mm for a source placed at 6 mm depth. In order to investigate the in vivo performances of the msCLT reconstruction method, a control nude mice injected with 10 MBq of 32P-ATP were imaged. Whole body MRI was acquired to provide an anatomical localization of the Cerenkov emission. msCLT reconstructed images co-registered with MRI images showed that the Cerenkov emission regions matches well with anatomical regions, such as the brain, heart and abdomen. These results were also confirmed by ex vivo imaging of organs such as intestine, brain, heart and - ibs

    The MariX source (Multidisciplinary Advanced Research Infrastructure with X-rays)

    Get PDF
    MariX (Multidisciplinary advanced research infra-structure with X-rays) is a joint project of INFN and University of Milan, aiming at developing a twin X-ray Source of advanced characteristics for the future Sci-entific Campus of the University of Milan. Presently in its design study phase, it will be built in the post Expo area located in north-west Milan district. The first component of the X-source MariX is BriXS (Bright and compact X-ray Source), a Compton X-ray source based on superconducting cavities technology for the electron beam with energy recirculation and on a laser system in Fabry-PĂ©rot cavity at a repetition rate of 100 MHz, producing 20-180 keV radiation for medical applications. The BriXS accelerator is also serving as injector of a 3.8 GeV superconductive linac, driving a X-ray FEL at 1 MHz, for providing coherent, moderate flux radiation at 0.3-10 KeV at 1 MHz. Scientific case, layout and typical parameters of MariX will be discussed
    corecore