676 research outputs found
Electron-phonon coupling and electron self-energy in electron-doped graphene: calculation of angular resolved photoemission spectra
We obtain analytical expressions for the electron self-energy and the
electron-phonon coupling in electron-doped graphene using electron-phonon
matrix elements extracted from density functional theory simulations. From the
electron self-energies we calculate angle resolved photoemission spectra. We
demonstrate that the measured kink at eV from the Fermi level is
actually composed of two features, one at eV due to the
twofold degenerate E mode, and a second one at eV due to
the A mode. The electron-phonon coupling extracted from the kink
observed in ARPES experiments is roughly a factor of 5.5 larger than the
calculated one. This disagreement can only be partially reconciled by the
inclusion of resolution effects. Indeed we show that a finite resolution
increases the apparent electron-phonon coupling by underestimating the
renormalization of the electron velocity at energies larger than the kinks
positions. The discrepancy between theory and experiments is thus reduced to a
factor of 2.2. From the linewidth of the calculated ARPES spectra we
obtain the electron relaxation time. A comparison with available experimental
data in graphene shows that the electron relaxation time detected in ARPES is
almost two orders of magnitudes smaller than what measured by other
experimental techniques.Comment: 9 pages, 7 figures, see also Matteo Calandra and Francesco Mauri,
arXiv:0707.149
Green Function Monte Carlo with Stochastic Reconfiguration: an effective remedy for the sign problem disease
A recent technique, proposed to alleviate the ``sign problem disease'', is
discussed in details. As well known the ground state of a given Hamiltonian
can be obtained by applying the imaginary time propagator to a
given trial state for large imaginary time and sampling
statistically the propagated state . However
the so called ``sign problem'' may appear in the simulation and such
statistical propagation would be practically impossible without employing some
approximation such as the well known ``fixed node'' approximation (FN). This
method allows to improve the FN dynamic with a systematic correction scheme.
This is possible by the simple requirement that, after a short imaginary time
propagation via the FN dynamic, a number of correlation functions can be
further constrained to be {\em exact} by small perturbation of the FN
propagated state, which is free of the sign problem. By iterating this scheme
the Monte Carlo average sign, which is almost zero when there is sign problem,
remains stable and finite even for large . The proposed algorithm is
tested against the exact diagonalization results available on finite lattice.
It is also shown in few test cases that the dependence of the results upon the
few parameters entering the stochastic technique can be very easily controlled,
unless for exceptional cases.Comment: 44 pages, RevTeX + 5 encaplulated postscript figure
Phonon collapse and van der Waals melting of the 3D charge density wave of VSe
Among transition metal dichalcogenides (TMDs), VSe is considered to
develop a purely 3-dimensional (3D) charge-density wave (CDW) at T=110
K. Here, by means of high resolution inelastic x-ray scattering (IXS), we show
that the CDW transition is driven by the collapse of an acoustic mode at the
critical wavevector \textit{q}= (2.25 0 0.7) r.l.u. and critical
temperature T=110 K. The softening of this mode starts to be pronounced
for temperatures below 2 T and expands over a rather wide
region of the Brillouin zone, suggesting a large contribution of the
electron-phonon interaction to the CDW formation. This interpretation is
supported by our first principles calculations that determine a large
momentum-dependence of the electron-phonon interaction, peaking at the CDW
wavevector, in the presence of nesting. Fully anharmonic {\it ab initio}
calculations confirm the softening of one acoustic branch at \textit{q}
as responsible for the CDW formation and show that van der Waals interactions
are crucial to melt the CDW. Our work also highlights the important role of
out-of-plane interactions to describe 3D CDWs in TMDs
A Ca2+-activated potassium channel (BKCa) in Leydig cells is involved in testosterone production
Previously, we found that human steroid-producing ovarian granulosa cells express all major types of Ca2+-activated potassium channels (KCa), including BKCa, IK and SKs (Traut et al., RB&E, 2009), and that modulation of the activity of these channels resulted in alteration of steroid production. In the male gonad Leydig cells produce androgens, but whether these cells are endowed with KCas is not known. We addressed these points and focussed on BKCa, which is Ca2+-activated and the underlying channel for a prominent current. It can be manipulated, e.g. by a specific blocker, the red scorpion toxin iberiotoxin (IbTx), which binds to the outer face with high affinity and selectively inhibits the current by decreasing both the probability of opening and the open time of the channel.Fil: Siebert, S. Ludwig Maximilians Universität München. ; AlemaniaFil: Spinnler, K. Ludwig Maximilians Universität München. ; AlemaniaFil: Matzkin, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kunz, L. Ludwig Maximilians Universität München. ; AlemaniaFil: Calandra, Ricardo Saul. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Frungieri, Monica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mayerhofer, A. Ludwig Maximilians Universität München. ; Alemania22. Jahrestagung der Deutschen Gesellschaft für Andrologie e VHamburgoAlemaniaDeutsche Gesellschaft für AndrologieConventus Congressmanagement und Marketing Gmb
Charge fluctuations close to phase separation in the two dimensional t-J model
We have studied the t-J model using the Green Function Monte Carlo technique.
We have obtained accurate energies well converged in the thermodynamic limit,
by performing simulations up to 242 lattice sites. By studying the energy as a
function of hole doping we conclude that there is no phase separation in the
physical region, relevant for HTc superconductors. This finding is further
supported by the hole-hole correlation function calculation. Remarkably, by
approaching the phase separation instability, for ,this function
displays enhanced fluctuations at incommensurate wavevectors, scaling linearly
with the doping, in agreement with experimental findings.Comment: To appear on Phys. Rev. Let
On-site correlation in valence and core states of ferromagnetic nickel
We present a method which allows to include narrow-band correlation effects
into the description of both valence and core states and we apply it to the
prototypical case of nickel. The results of an ab-initio band calculation are
used as input mean-field eigenstates for the calculation of self-energy
corrections and spectral functions according to a three-body scattering
solution of a multi-orbital Hubbard hamiltonian. The calculated quasi-particle
spectra show a remarkable agreement with photoemission data in terms of band
width, exchange splitting, satellite energy position of valence states, spin
polarization of both the main line and the satellite of the 3p core level.Comment: 14 pages, 10 PostScript figures, RevTeX, submitted to PR
Phonon dispersion and lifetimes in MgB2
We measure phonon dispersion and linewidth in a single crystal of MgB_2 along
the Gamma-A, Gamma-M and A-L directions using inelastic X-Ray scattering. We
use Density Functional Theory to compute the effect of both electron-phonon
coupling and anharmonicity on the linewidth, obtaining excellent agreement with
experiment. Anomalous broadening of the E_2g phonon mode is found all along
Gamma-A. The dominant contribution to the linewidth is always the
electron-phonon coupling.Comment: 4 pages, 3 figure
Spin liquid ground state in a two dimensional non-frustrated spin model
We consider an exchange model describing two isotropic spin-1/2 Heisenberg
antiferromagnets coupled by a quartic term on the square lattice. The model is
relevant for systems with orbital degeneracy and strong electron-vibron
coupling in the large Hubbard repulsion limit, and is known to show a
spin-Peierls-like dimerization in one dimension. In two dimensions we calculate
energy gaps, susceptibilities, and correlation functions with a Green's
Function Monte Carlo. We find a finite spin gap and no evidence of any kind of
order. We conclude that the ground state is, most likely, a spin liquid of
resonating valence bonds.Comment: 4 pages, 4 figures, Revte
Angle-resolved photoemission spectra of graphene from first-principles calculations
Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental
technique for directly probing electron dynamics in solids. The energy vs.
momentum dispersion relations and the associated spectral broadenings measured
by ARPES provide a wealth of information on quantum many-body interaction
effects. In particular, ARPES allows studies of the Coulomb interaction among
electrons (electron-electron interactions) and the interaction between
electrons and lattice vibrations (electron-phonon interactions). Here, we
report ab initio simulations of the ARPES spectra of graphene including both
electron-electron and electron-phonon interactions on the same footing. Our
calculations reproduce some of the key experimental observations related to
many-body effects, including the indication of a mismatch between the upper and
lower halves of the Dirac cone
Charge Fluctuations in Geometrically Frustrated Charge Ordering System
Effects of geometrical frustration in low-dimensional charge ordering systems
are theoretically studied, mainly focusing on dynamical properties. We treat
extended Hubbard models at quarter-filling, where the frustration arises from
competing charge ordered patterns favored by different intersite Coulomb
interactions, which are effective models for various charge transfer-type
molecular conductors and transition metal oxides. Two different lattice
structures are considered: (a) one-dimensional chain with intersite Coulomb
interaction of nearest neighbor V_1 and that of next-nearest neighbor V_2, and
(b) two-dimensional square lattice with V_1 along the squares and V_2 along one
of the diagonals. From previous studies, charge ordered insulating states are
known to be unstable in the frustrated region, i.e., V_1 \simeq 2V_2 for case
(a) and V_1 \simeq V_2 for case (b), resulting in a robust metallic phase even
when the interaction strenghs are strong. By applying the Lanczos exact
diagonalization to finite-size clusters, we have found that fluctuations of
different charge order patterns exist in the frustration-induced metallic
phase, showing up as characteristic low energy modes in dynamical correlation
functions. Comparison of such features between the two models are discussed,
whose difference will be ascribed to the dimensionality effect. We also point
out incommensurate correlation in the charge sector due to the frustration,
found in one-dimensional clusters.Comment: 8 pages, 9 figure
- …