36 research outputs found

    Characterization of B Cell Development and Activation in the Absence of Akt or Presenilin

    Get PDF
    The biochemical pathways critical to B cell development remain poorly defined. Here I characterize a critical role for two separate families of proteins, Akt and Presenilin in the development and activation of B cells. The absence of Akt1 and Akt2 leads to a block in marginal zone (MZ) and B1B cell development, as well as decreased cellularity of splenic follicular B cells. In addition, I find the combined loss of Akt1 and Akt2 causes altered B cell receptor repertoire and poor competitive ability when matched against wild-type B cells. Similar to deficiencies in the Akt pathway the combined loss of Presenilin1 and Presenilin2 results in defective MZ, B1B cell development, and altered BCR repertoire selection. Furthermore, I find that these defects are independent of the Notch pathway and that Presenilins are required for optimal responses to cross-linking of the BCR. Collectively, these findings identify and phenotypically characterize two novel pathways important to B cell development and function

    Development of tailorable advanced blanket insulation for advanced space transportation systems

    Get PDF
    Two items of Tailorable Advanced Blanket Insulation (TABI) for Advanced Space Transportation Systems were produced. The first consisted of flat panels made from integrally woven, 3-D fluted core having parallel fabric faces and connecting ribs of Nicalon silicon carbide yarns. The triangular cross section of the flutes were filled with mandrels of processed Q-Fiber Felt. Forty panels were prepared with only minimal problems, mostly resulting from the unavailability of insulation with the proper density. Rigidizing the fluted fabric prior to inserting the insulation reduced the production time. The procedures for producing the fabric, insulation mandrels, and TABI panels are described. The second item was an effort to determine the feasibility of producing contoured TABI shapes from gores cut from flat, insulated fluted core panels. Two gores of integrally woven fluted core and single ply fabric (ICAS) were insulated and joined into a large spherical shape employing a tadpole insulator at the mating edges. The fluted core segment of each ICAS consisted of an Astroquartz face fabric and Nicalon face and rib fabrics, while the single ply fabric segment was Nicalon. Further development will be required. The success of fabricating this assembly indicates that this concept may be feasible for certain types of space insulation requirements. The procedures developed for weaving the ICAS, joining the gores, and coating certain areas of the fabrics are presented

    Tailorable advanced blanket insulation using aluminoborosilicate and alumina batting

    Get PDF
    Two types of Tailorable Advanced Blanket Insulation (TABI) flat panels for Advanced Space Transportation Systems were produced. Both types consisted of integrally woven, 3-D fluted core having parallel faces and connecting ribs of Nicalon yarns. The triangular cross section flutes of one type was filled with mandrels of processed Ultrafiber (aluminoborosilicate) stitchbonded Nextel 440 fibrous felt, and the second type wall filled with Saffil alumina fibrous felt insulation. Weaving problems were minimal. Insertion of the fragile insulation mandrels into the fabric flutes was improved by using a special insertion tool. An attempt was made to weave fluted core fabrics from Nextel 440 yarns but was unsuccessful because of the yarn's fragility. A small sample was eventually produced by an unorthodox weaving process and then filled with Saffil insulation. The procedures for setting up and weaving the fabrics and preparing and inserting insulation mandrels are discussed. Characterizations of the panels produced are also presented

    YY1 controls Igκ repertoire and B-cell development, and localizes with condensin on the Igκ locus

    No full text
    Conditional knock-out (KO) of Polycomb Group (PcG) protein YY1 results in pro-B cell arrest and reduced immunoglobulin locus contraction needed for distal variable gene rearrangement. The mechanisms that control these crucial functions are unknown. We deleted the 25 amino-acid YY1 REPO domain necessary for YY1 PcG function, and used this mutant (YY1ΔREPO), to transduce bone marrow from YY1 conditional KO mice. While wild-type YY1 rescued B-cell development, YY1ΔREPO failed to rescue the B-cell lineage yielding reduced numbers of B lineage cells. Although the IgH rearrangement pattern was normal, there was a selective impact at the Igκ locus that showed a dramatic skewing of the expressed Igκ repertoire. We found that the REPO domain interacts with proteins from the condensin and cohesin complexes, and that YY1, EZH2 and condensin proteins co-localize at numerous sites across the Ig kappa locus. Knock-down of a condensin subunit protein or YY1 reduced rearrangement of Igκ Vκ genes suggesting a direct role for YY1-condensin complexes in Igκ locus structure and rearrangement. © 2013 European Molecular Biology Organization.link_to_subscribed_fulltex

    WIP is a chaperone for Wiskott–Aldrich syndrome protein (WASP)

    Get PDF
    Wiskott–Aldrich syndrome protein (WASP) is in a complex with WASP-interacting protein (WIP). WASP levels, but not mRNA levels, were severely diminished in T cells from WIP(−/−) mice and were increased by introduction of WIP in these cells. The WASP binding domain of WIP was shown to protect WASP from degradation by calpain in vitro. Treatment with the proteasome inhibitors MG132 and bortezomib increased WASP levels in T cells from WIP(−/−) mice and in T and B lymphocytes from two WAS patients with missense mutations (R86H and T45M) that disrupt WIP binding. The calpain inhibitor calpeptin increased WASP levels in activated T and B cells from the WASP patients, but not in primary T cells from the patients or from WIP(−/−) mice. Despite its ability to increase WASP levels proteasome inhibition did not correct the impaired IL-2 gene expression and low F-actin content in T cells from the R86H WAS patient. These results demonstrate that WIP stabilizes WASP and suggest that it may also be important for its function
    corecore