10 research outputs found

    Quantum Dot Imaging Agents: Haematopoietic Cell Interactions and Biocompatibility

    Get PDF
    Quantum dots (QDs) are semi-conducting nanoparticles that have been developed for a range of biological and non-biological functions. They can be tuned to multiple different emission wavelengths and can have significant benefits over other fluorescent systems. Many studies have utilised QDs with a cadmium-based core; however, these QDs have since been shown to have poor biological compatibility. Therefore, other QDs, such as indium phosphide QDs, have been developed. These QDs retain excellent fluorescent intensity and tunability but are thought to have elevated biological compatibility. Herein we discuss the applicability of a range of QDs to the cardiovascular system. Key disease states such as myocardial infarction and stroke are associated with cardiovascular disease (CVD), and there is an opportunity to improve clinical imaging to aide clinical outcomes for these disease states. QDs offer potential clinical benefits given their ability to perform multiple functions, such as carry an imaging agent, a therapy, and a targeting motif. Two key cell types associated with CVD are platelets and immune cells. Both cell types play key roles in establishing an inflammatory environment within CVD, and as such aid the formation of pathological thrombi. However, it is unclear at present how and with which cell types QDs interact, and if they potentially drive unwanted changes or activation of these cell types. Therefore, although QDs show great promise for boosting imaging capability, further work needs to be completed to fully understand their biological compatibility

    Should aspirin be replaced with ADP blockers or anti-GPVI to manage thrombosis?

    Get PDF
    Platelets have a pivotal role in maintaining cardiovascular homeostasis. They are kept docile by endothelial derived mediators. Aberration in haemostatic balance predisposes an individual to an elevated risk of a pro-thrombotic environment. Anti-platelet therapy has been a key component to reduce this risk. However, understanding how these medications affect the balance between activation and inhibition of platelets is critical. There is now evidence that a key antiplatelet therapy – aspirin, may not be the most efficacious medicine of choice, as it can compromise both platelet inhibition and activation pathways. In this review the rationale of aspirin as an anti-thrombotic drug has been critically discussed. This review looks at how recent published trials are asking key questions on the efficacy and safety of aspirin in countering cardiovascular diseases. There is an increasing portfolio of evidence that identifies that although aspirin is a very cheap and accessible drug, it may be used in a manner that is not always beneficial to a patient, and a more nuanced and targeted use of aspirin may increase its clinical benefit and maximize patient response. The questions around the use of aspirin raises the potential for changes in its clinical use for dual anti-platelet therapy. This highlights the need to ensure that treatment is targeted in the most effective manner, and that other anti-platelet therapies may well be more efficacious and beneficial for CVD patients in their standard and personalized approaches

    NIR-quantum dots in biomedical imaging and their future

    Get PDF
    Fluorescence imaging has gathered interest over the recent years for its real-time response and high sensitivity. Developing probes for this modality has proven to be a challenge. Quantum dots (QDs) are colloidal nanoparticles that possess unique optical and electronic properties due to quantum confinement effects, whose excellent optical properties make them ideal for fluorescence imaging of biological systems. By selectively controlling the synthetic methodologies it is possible to obtain QDs that emit in the first (650–950 nm) and second (1000–1400 nm) near infra-red (NIR) windows, allowing for superior imaging properties. Despite the excellent optical properties and biocompatibility shown by some NIR QDs, there are still some challenges to overcome to enable there use in clinical applications. In this review, we discuss the latest advances in the application of NIR QDs in preclinical settings, together with the synthetic approaches and material developments that make NIR QDs promising for future biomedical applications

    Platelet zinc status regulates prostaglandin-induced signaling, altering thrombus formation

    Get PDF
    Background: Approximately 17.3% of the global population exhibits an element of zinc (Zn2+) deficiency. One symptom of Zn2+ deficiency is increased bleeding through impaired hemostasis. Platelets are crucial to hemostasis and are inhibited by endothelial-derived prostacyclin (prostaglandin I2 [PGI2]), which signals via adenylyl cyclase (AC) and cyclic adenosine monophosphate signaling. In other cell types, Zn2+ modulates cyclic adenosine monophosphate concentrations by changing AC and/or phosphodiesterase activity. Objectives: To investigate if Zn2+ can modulate platelet PGI2 signaling. Methods: Platelet aggregation, spreading, and western blotting assays with Zn2+ chelators and cyclic nucleotide elevating agents were performed in washed platelets and platelet-rich plasma conditions. In vitro thrombus formation with various Zn2+ chelators and PGI2 was assessed in whole blood. Results: Incubation of whole blood or washed platelets with Zn2+ chelators caused either embolization of preformed thrombi or reversal of platelet spreading, respectively. To understand this effect, we analyzed resting platelets and identified that incubation with Zn2+ chelators elevated pVASPser157, a marker of PGI2 signaling. In agreement that Zn2+ affects PGI2 signaling, addition of the AC inhibitor SQ22536 blocked Zn2+ chelation–induced platelet spreading reversal, while addition of Zn2+ blocked PGI2-mediated platelet reversal. Moreover, Zn2+ specifically blocked forskolin-mediated AC reversal of platelet spreading. Finally, PGI2 inhibition of platelet aggregation and in vitro thrombus formation was potentiated in the presence of low doses of Zn2+ chelators, increasing its effectiveness in inducing platelet inhibition. Conclusion: Zn2+ chelation potentiates platelet PGI2 signaling, elevating PGI2’s ability to prevent effective platelet activation, aggregation, and thrombus formation

    Actin on trafficking: could actin guide directed receptor transport?

    No full text
    Here, we present emerging ideas surrounding the interplay between the actin cytoskeleton and receptor transport and activation. The bulk of actin dynamics in cells is thought to contribute to architecture and mobility. Actin also contributes to trafficking, acting as a molecular scaffold, providing force to deform membranes, facilitating vesicle abscission or propelling a vesicle through the cytoplasm1,2 and recent studies highlight important connections between the directed trafficking of receptors and the impact on cell migration and actin dynamics. Additionally, a number of newly described actin nucleation promoting factors, such as the vesicle associated protein WASH, reveal unexpected roles of actin in membrane traffic and suggest that the cell dedicates a significant proportion of its regulation of actin dynamics to controlling trafficking

    Actin on trafficking

    No full text
    Here, we present emerging ideas surrounding the interplay between the actin cytoskeleton and receptor transport and activation. The bulk of actin dynamics in cells is thought to contribute to architecture and mobility. Actin also contributes to trafficking, acting as a molecular scaffold, providing force to deform membranes, facilitating vesicle abscission or propelling a vesicle through the cytoplasm(1)(,)(2) and recent studies highlight important connections between the directed trafficking of receptors and the impact on cell migration and actin dynamics. Additionally, a number of newly described actin nucleation promoting factors, such as the vesicle associated protein WASH, reveal unexpected roles of actin in membrane traffic and suggest that the cell dedicates a significant proportion of its regulation of actin dynamics to controlling trafficking

    Practical considerations of dissolved oxygen levels for platelet function under hypoxia

    Get PDF
    Investigating human platelet function in low-oxygen environments is important in multiple settings, including hypobaric hypoxia (e.g., high altitude), sea level hypoxia-related disease, and thrombus stability. These studies often involve drawing blood from which platelets are isolated and analysed at atmospheric conditions or re-exposed to low oxygen levels in hypoxia chambers before testing. However, it remains unknown how the in vitro handling of the samples itself changes their dissolved oxygen concentration, which might affect platelet function and experimental results. Here, we prepared healthy donor platelet-rich plasma and washed platelet (WP) suspensions and exposed them to 2% oxygen. We found that the use of hypoxia pre-equilibrated tubes, higher platelet concentrations (>2 × 108 /mL versus 2 × 107 /mL), smaller volumes (600 µL versus 3 mL), and presence of plasma reduced the time for samples to reach 2% oxygen. Notably, oxygen levels decreased below 2% in most suspensions, but also in WP maintained at atmospheric 21% oxygen. Additionally, platelet spreading on fibrinogen was decreased when using hypoxic fibrinogen-coated culture plates regardless of the oxygen percentage (2% or 21%) in which platelet incubation took place. Thus, sample handling and experimental conditions should be carefully monitored in platelethypoxia studies as they might compromise results interpretation and comparison across studies

    Tissue inducible Lifeact expression allows visualization of actin dynamics in vivo and ex vivo

    No full text
    We describe here the development and characterization of a conditionally inducible mouse model expressing Lifeact-GFP, a peptide that reports the dynamics of filamentous actin. We have used this model to study platelets, megakaryocytes and melanoblasts and we provide evidence that Lifeact-GFP is a useful reporter in these cell types ex vivo. In the case of platelets and megakaryocytes, these cells are not transfectable by traditional methods, so conditional activation of Lifeact allows the study of actin dynamics in these cells live. We studied melanoblasts in native skin explants from embryos, allowing the visualization of live actin dynamics during cytokinesis and migration. Our study revealed that melanoblasts lacking the small GTPase Rac1 show a delay in the formation of new pseudopodia following cytokinesis that accounts for the previously reported cytokinesis delay in these cells. Thus, through use of this mouse model, we were able to gain insights into the actin dynamics of cells that could only previously be studied using fixed specimens or following isolation from their native tissue environment
    corecore