250 research outputs found

    Inertial control of the mirror suspensions of the VIRGO interferometer for gravitational wave detection

    Get PDF
    In order to achieve full detection sensitivity at low frequencies, the mirrors of interferometric gravitational wave detectors must be isolated from seismic noise. The VIRGO vibration isolator, called 'superattenuator', is fully effective at frequencies above 4 Hz. Nevertheless, the residual motion of the mirror at the mechanical resonant frequencies of the system are too large for the interferometer locking system and must be damped. A multidimensional feedback system, using inertial sensors and digital processing, has been designed for this purpose. An experimental procedure for determining the feedback control of the system has been defined. In this paper a full description of the system is given and experimental results are presented.Comment: 17 pages, 11 figures, accepted for publication on Review of Scientific Instrument

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    Get PDF
    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.Comment: submitted to Astroparticle Physic

    The infrared supernova rate in starburst galaxies

    Get PDF
    We report the results of our ongoing search for extincted supernovae (SNe) at near-infrared wavelengths. We have monitored at 2.2 micron a sample of 46 Luminous Infrared Galaxies and detected 4 SNe. The number of detections is still small but sufficient to provide the first estimate of supernova rate at near-infrared wavelengths. We measure a SN rate ofv 7.6+/-3.8 SNu which is an order of magnitude larger than observed in quiescent galaxies. On the other hand, the observed near-infrared rate is still a factor 3-10 smaller than that estimated from the far-infrared luminosity of the galaxies. Among various possibilities, the most likely scenario is that dust extinction is so high (Av>30) to obscure most SNe even in the near-IR. The role of type Ia SNe is also discussed within this context. We derive the type Ia SN rate as a function of the stellar mass of the galaxy and find a sharp increase toward galaxies with higher activity of star formation. This suggests that a significant fraction of type Ia SNe are associated with young stellar populations. Finally, as a by-product, we give the average K-band light curve of core-collapse SNe based on all the existing data, and review the relation between SN rate and far-infrared luminosity.Comment: A&A, in press, 13 page

    Energy Release During Disk Accretion onto a Rapidly Rotating Neutron Star

    Get PDF
    The energy release L_s on the surface of a neutron star (NS) with a weak magnetic field and the energy release L_d in the surrounding accretion disk depend on two independent parameters that determine its state (for example, mass M and cyclic rotation frequency f) and is proportional to the accretion rate. We derive simple approximation formulas illustrating the dependence of the efficiency of energy release in an extended disk and in a boundary layer near the NS surface on the frequency and sense of rotation for various NS equations of state. Such formulas are obtained for the quadrupole moment of a NS, for a gap between its surface and a marginally stable orbit, for the rotation frequency in an equatorial Keplerian orbit and in the marginally stable circular orbit, and for the rate of NS spinup via disk accretion. In the case of NS and disk counterrotation, the energy release during accretion can reach 0.67MΛ™c20.67\dot{M}c^2. The sense of NS rotation is a factor that strongly affects the observed ratio of nuclear energy release during bursts to gravitational energy release between bursts in X-ray bursters. The possible existence of binary systems with NS and disk counterrotation in the Galaxy is discussed. Based on the static criterion for stability, we present a method of constructing the dependence of gravitational mass M on Kerr rotation parameter j and on total baryon mass (rest mass) m for a rigidly rotating neutron star. We show that all global NS characteristics can be expressed in terms of the function M(j, m) and its derivatives.Comment: 42 pages, 12 figures, to appear in Astronomy Letters, 2000, v.26, p.69

    A serum metabolomics classifier derived from elderly patients with metastatic colorectal cancer predicts relapse in the adjuvant setting

    Get PDF
    Adjuvant treatment for patients with early stage colorectal cancer (eCRC) is currently based on suboptimal risk stratification, especially for elderly patients. Metabolomics may improve the identification of patients with residual micrometastases after surgery. In this retrospective study, we hypothesized that metabolomic fingerprinting could improve risk stratification in patients with eCRC. Serum samples obtained after surgery from 94 elderly patients with eCRC (65 relapse free and 29 relapsed, after 5-years median follow up), and from 75 elderly patients with metastatic colorectal cancer (mCRC) obtained before a new line of chemotherapy, were retrospectively analyzed via proton nuclear magnetic resonance spectroscopy. The prognostic role of metabolomics in patients with eCRC was assessed using Kaplan–Meier curves. PCA-CA-kNN could discriminate the metabolomic fingerprint of patients with relapse-free eCRC and mCRC (70.0% accuracy using NOESY spectra). This model was used to classify the samples of patients with relapsed eCRC: 69% of eCRC patients with relapse were predicted as metastatic. The metabolomic classification was strongly associated with prognosis (p-value 0.0005, HR 3.64), independently of tumor stage. In conclusion, metabolomics could be an innovative tool to refine risk stratification in elderly patients with eCRC. Based on these results, a prospective trial aimed at improving risk stratification by metabolomic fingerprinting (LIBIMET) is ongoing

    Outcomes of Patients with Early Onset Colorectal Cancer Treated in a UK Specialist Cancer Center.

    Get PDF
    The incidence of early onset colorectal cancer (EOCRC) is rapidly increasing, but there remains paucity of outcome data for young CRC patients. We reviewed the characteristics and outcomes of 241 adults, age <50, who were diagnosed with EOCRC between January 2009 and December 2014. Median age was 42, 56% were male, and 7% had hereditary etiology. Seventy percent had left-sided primaries. At diagnosis, 11%, 50%, and 39% had stage II, III, and IV CRC. Of the patients with stage II and III CRC who underwent curative surgery, 60% and 88% had adjuvant chemotherapy, with 5-year relapse free survival of 82% and 74% respectively. Of the 123 patients with metastatic (m) EOCRC, 93%, 63%, 33%, and 12% had 1st, 2nd, 3rd, and 4th line systemic anticancer therapy (SACT) respectively. For first line SACT, 99% had doublet chemotherapy, with bevacizumab or an anti-EGFR antibody in 57%. Median overall survival (mOS) of mEOCRC patients was 20.1 months (95% C.I: 15.9-23.2). Younger age and signet cells were associated with shorter mOS, whereas more lines of SACT and curative metastasectomy with longer mOS. Metastatic EOCRC patients had poorer outcomes than expected, despite optimal multimodality treatment. This suggests an aggressive disease biology that warrants further research and therapy development

    THE STEREO CAMERA ON THE BEPICOLOMBO ESA/JAXA MISSION: A NOVEL APPROACH

    Get PDF
    The stereo camera (STC) is one of three channels of the spectrometer and imagers for Mercury Planet Orbiter BepiColombo Integrated Observatory SYStem (SIMBIOSYS), which will be on board the Mercury Planetary Orbiter of the ESA mission BepiColombo. SIMBIOSYS includes also an high resolution imaging channel (HRIC), providing images at spatial resolution of 5m/pixel at the periherm, and the VIS-NIR spectrometer (VIHI) that will provide the global mapping of the Mercury's surface in the spectral range 400-2200 nm, with a spectral sampling of 6.25 nm, and the spatial resolution of 400m/pixel at the periherm. The main scientific objective of STC is the global mapping of the entire surface of the Mercury in 3D and colors with a scale factor of 50m/pixel at the periherm. It will allow to generate the digital terrain model (DTM) of the entire surface improving the interpretation of morphological features at different scales and topographic relationships. The harsh environment of the Mercury will strongly affect the functionalities and performance of the instruments reducing the resources allocated to the payload. Even for the stereo camera, as for most of the instrument on board BepiColombo, a novel design had to be considered. We have implemented an original optical design, modifying a classical configurations, and a new technique of acquiring the stereo pairs for generating the DTM of the surface. The new technique will have an impact on the software chain generating the DTM and on the observation strategy. The stereo camera consists of two channels, looking at the surface at Β±20Β° from the nadir direction, converging on the same bidimensional focal plane assembly, with no mechanical movable parts. The configuration of the focal plane assembly allows to apply the push-frame technique to acquire the stereo images

    Amyloid-Associated Nucleic Acid Hybridisation

    Get PDF
    Nucleic acids promote amyloid formation in diseases including Alzheimer's and Creutzfeldt-Jakob disease. However, it remains unclear whether the close interactions between amyloid and nucleic acid allow nucleic acid secondary structure to play a role in modulating amyloid structure and function. Here we have used a simplified system of short basic peptides with alternating hydrophobic and hydrophilic amino acid residues to study nucleic acid - amyloid interactions. Employing biophysical techniques including X-ray fibre diffraction, circular dichroism spectroscopy and electron microscopy we show that the polymerized charges of nucleic acids concentrate and enhance the formation of amyloid from short basic peptides, many of which would not otherwise form fibres. In turn, the amyloid component binds nucleic acids and promotes their hybridisation at concentrations below their solution Kd, as shown by time-resolved FRET studies. The self-reinforcing interactions between peptides and nucleic acids lead to the formation of amyloid nucleic acid (ANA) fibres whose properties are distinct from their component polymers. In addition to their importance in disease and potential in engineering, ANA fibres formed from prebiotically-produced peptides and nucleic acids may have played a role in early evolution, constituting the first entities subject to Darwinian evolution

    In Vitro Aggregation Behavior of a Non-Amyloidogenic Ξ» Light Chain Dimer Deriving from U266 Multiple Myeloma Cells

    Get PDF
    Excessive production of monoclonal light chains due to multiple myeloma can induce aggregation-related disorders, such as light chain amyloidosis (AL) and light chain deposition diseases (LCDD). In this work, we produce a non-amyloidogenic IgE Ξ» light chain dimer from human mammalian cells U266, which originated from a patient suffering from multiple myeloma, and we investigate the effect of several physicochemical parameters on the in vitro stability of this protein. The dimer is stable in physiological conditions and aggregation is observed only when strong denaturating conditions are applied (acidic pH with salt at large concentration or heating at melting temperature Tm at pH 7.4). The produced aggregates are spherical, amorphous oligomers. Despite the larger Ξ²-sheet content of such oligomers with respect to the native state, they do not bind Congo Red or ThT. The impossibility to obtain fibrils from the light chain dimer suggests that the occurrence of amyloidosis in patients requires the presence of the light chain fragment in the monomer form, while dimer can form only amorphous oligomers or amorphous deposits. No aggregation is observed after denaturant addition at pH 7.4 or at pH 2.0 with low salt concentration, indicating that not a generic unfolding but specific conformational changes are necessary to trigger aggregation. A specific anion effect in increasing the aggregation rate at pH 2.0 is observed according to the following order: SO4βˆ’β‰«Clβˆ’>H2PO4βˆ’, confirming the peculiar role of sulfate in promoting protein aggregation. It is found that, at least for the investigated case, the mechanism of the sulfate effect is related to protein secondary structure changes induced by anion binding
    • …
    corecore