128 research outputs found

    From Serendipity to Rational Design: Heteroleptic Dirhodium Amidate Complexes for Diastereodivergent Asymmetric Cyclopropanation

    Get PDF
    A heteroleptic dirhodium paddlewheel complex comprising three chiral carboxylate ligands and one achiral acetamidate ligand has recently been found to be uniquely effective in catalyzing the asymmetric cyclopropanation of olefins with α-stannylated (silylated and germylated) α-diazoacetate derivatives. A number of control experiments in combination with detailed computational studies provide compelling evidence that an interligand hydrogen bond between the −NH group of the amidate and the ester carbonyl group of the reactive rhodium carbene intermediate plays a quintessential role in the stereodetermining transition state. The penalty for distorting this array outweighs steric arguments and renders two of the four conceivable transitions states unviable. Based on this mechanistic insight, the design of the parent catalyst is revisited herein: placement of appropriate peripheral substituents allows high levels of diastereocontrol to be imposed upon cyclopropanation, which the original catalyst lacks. Because the new complexes allow either trans- or cis-configured stannylated cyclopropanes to be made selectively and in excellent optical purity, this transformation also marks a rare case of diastereodivergent asymmetric catalysis. The products are amenable to stereospecific cross coupling with aryl halides or alkenyl triflates; these transformations appear to be the first examples of the formation of stereogenic quaternary carbon centers by the Stille reaction; carbonylative coupling is also achieved. Moreover, tin/lithium exchange affords chiral lithium enolates, which can be intercepted with a variety of electrophilic partners. The virtues and inherent flexibility of this new methodology are illustrated by an efficient synthesis of two salinilactones, extremely scarce bacterial metabolites with signaling function involved in the self-regulatory growth inhibition of the producing strain

    Triple Resonance Experiments for the Rapid Detection of <sup>103</sup>Rh NMR Shifts: A Combined Experimental and Theoretical Study into Dirhodium and Bismuth–Rhodium Paddlewheel Complexes

    Get PDF
    A H(C)Rh triple resonance NMR experiment makes the rapid detection of 103Rh chemical shifts possible, which were previously beyond reach. It served to analyze a series of dirhodium and bismuth–rhodium paddlewheel complexes of the utmost importance for metal–carbene chemistry. The excellent match between the experimental and computed 103Rh shifts in combination with a detailed analysis of the pertinent shielding tensors forms a sound basis for a qualitative and quantitative interpretation of these otherwise (basically) inaccessible data. The observed trends clearly reflect the influence exerted by the equatorial ligands (carboxylate versus carboxamidate), the axial ligands (solvents), and the internal “metalloligand” (Rh versus Bi) on the electronic estate of the reactive Rh(II) center

    ‘Sangiovese’ and ‘Garganega’ are two key varieties of the Italian grapevine assortment evolution

    Get PDF
    Two synonymous cases have been found using a set of 11 SSR markers: ‘Garganega’ and ‘Grecanico dorato’; ‘Catarratto bianco comune’, ‘Catarratto bianco lucido’ and ‘Catarratto bianco extra lucido’. Molecular data at 36 SSR loci showed that ‘Sangiovese’ and ‘Garganega’ represent two key varieties in the Italian ampelographic assortment evolution, as they both have a first degree relationship with numerous wine varieties. ‘Sangiovese’ showed this link with ten varieties: ‘Foglia tonda’, ‘Frappato’, ‘Gaglioppo’, ‘Mantonicone’, ‘Morellino del Casentino’, ‘Morellino del Valdarno’, ‘Nerello mascalese’, ‘Susumaniello’, ‘Tuccanese di Turi’ and ‘Vernaccia nera del Valdarno’. Seven varieties resulted closely related to ‘Garganega’: ‘Trebbiano toscano’ alias ‘Ugni blanc’, ‘Albana’, ‘Empibotte’, ‘Malvasia bianca di Candia a sapore semplice’, ‘Marzemina bianca’, ‘Catarratto’ and ‘Greco del Pollino’. However, being ‘Sangiovese’ parents disputed and those of ‘Garganega’ still unknown, it was not possible to determine the univocal direction of the various crosses. Identification of the “missing” parents would allow these genealogical trees to be drawn up with greater precision.

    [Rh<sub>2</sub>(MEPY)<sub>4</sub>] and [BiRh(MEPY)<sub>4</sub>]: Convenient Syntheses and Computational Analysis of Strikingly Dissimilar Siblings

    Get PDF
    [Rh2(MEPY)4] is a versatile catalyst for asymmetric synthesis but its preparation requires purification by chromatography on surface‐modified silica. A higher yielding procedure based on a more convenient work‐up is presented herein. Likewise, a much improved method for the preparation of [BiRh(OTfa)4] is described, which makes this heterobimetallic complex readily available. Subsequent exchange of the trifluoroacetate ligands opens access to a so far underappreciated family of (chiral) paddlewheel complexes. While [BiRh] complexes comprising four carboxylate ligands are highly adequate for intermolecular asymmetric cyclopropanation reactions, [BiRh(MEPY)4] as the heterobimetallic cousin of [Rh2(MEPY)4] was found to be surprisingly unreactive; DFT calculations uncover the reasons for this inertia

    ExoClock Project: An open platform for monitoring the ephemerides of Ariel targets with contributions from the public

    Get PDF
    The Ariel mission will observe spectroscopically around 1000 exoplanets to further characterise their atmospheres. For the mission to be as efficient as possible, a good knowledge of the planets' ephemerides is needed before its launch in 2028. While ephemerides for some planets are being refined on a per-case basis, an organised effort to collectively verify or update them when necessary does not exist. In this study, we introduce the ExoClock project, an open, integrated and interactive platform with the purpose of producing a confirmed list of ephemerides for the planets that will be observed by Ariel. The project has been developed in a manner to make the best use of all available resources: observations reported in the literature, observations from space instruments and, mainly, observations from ground-based telescopes, including both professional and amateur observatories. To facilitate inexperienced observers and at the same time achieve homogeneity in the results, we created data collection and validation protocols, educational material and easy to use interfaces, open to everyone. ExoClock was launched in September 2019 and now counts over 140 participants from more than 15 countries around the world. In this release, we report the results of observations obtained until the 15h of April 2020 for 119 Ariel candidate targets. In total, 632 observations were used to either verify or update the ephemerides of 83 planets. Additionally, we developed the Exoplanet Characterisation Catalogue (ECC), a catalogue built in a consistent way to assist the ephemeris refinement process. So far, the collaborative open framework of the ExoClock project has proven to be highly efficient in coordinating scientific efforts involving diverse audiences. Therefore, we believe that it is a paradigm that can be applied in the future for other research purposes, too

    Opioid receptors in GtoPdb v.2021.3

    Get PDF
    Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), &#946;-endorphin (&#946;-end), &#945;-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, &#956;, &#948; and &#954;, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP. [121, 100, 91]. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [294], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone, however only for the &#956; receptor

    Rheological properties of magnetic biogels

    Get PDF
    We report an experimental and theoretical study of the rheological properties of magnetic biogels consisting of fibrin polymer networks with embedded magnetite nanoparticles, swollen by aqueous solutions. We studied two types of magnetic biogels, differenced by the presence or absence of an applied magnetic field during the initial steps of cross-linking. The experiments demonstrated very strong dependence of the elastic modulus of the magnetic biogels on the concentration of the magnetic particles. We finally developed some theoretical models that explain the observed strong concentration effects.This study was supported by projects FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, MINECO, Spain, co-funded by ERDF, European Union) and FIS2017-85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, andAgencia Estatal de Investigación, AEI, Spain, co-funded by Fondo Europeo de Desarrollo Regional, FEDER, European Union). A.Z. is grateful to the program of the Ministry of Education and Science of the Russian Federation, projects 02.A03.21.0006, 3.1438.2017/4.6, and 3.5214.2017/6.7, as well as to the Russian Fund of Basic Researches, project 18-08-00178

    Opioid receptors in GtoPdb v.2023.1

    Get PDF
    Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), &#946;-endorphin (&#946;-end), &#945;-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, &#956;, &#948; and &#954;, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP [124, 101, 92]. However the acronyms MOR, DOR and KOR are still widely used in the literature. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [304], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone. The majority of clinically used opiates are relatively selective &#956; agonists or partial agonists, though there are some &#956;/&#954; compounds, such as butorphanol, in clinical use. &#954; opioid agonists, such as the alkaloid nalfurafine and the peripherally acting peptide difelikefalin, are in clinical use for itch

    ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations

    Get PDF
    The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community
    corecore