43 research outputs found

    Thermal scanning probe lithography

    Get PDF
    Thermal scanning probe lithography (tSPL) is a nanofabrication method for the chemical and physical nanopatterning of a large variety of materials and polymer resists with a lateral resolution of 10 nm and a depth resolution of 1 nm. In this Primer, we describe the working principles of tSPL and highlight the characteristics that make it a powerful tool to locally and directly modify material properties in ambient conditions. We introduce the main features of tSPL, which can pattern surfaces by locally delivering heat using nanosized thermal probes. We define the most critical patterning parameters in tSPL and describe post-patterning analysis of the obtained results. The main sources of reproducibility issues related to the probe and the sample as well as the limitations of the tSPL technique are discussed together with mitigation strategies. The applications of tSPL covered in this Primer include those in biomedicine, nanomagnetism and nanoelectronics; specifically, we cover the fabrication of chemical gradients, tissue-mimetic surfaces, spin wave devices and field-effect transistors based on two-dimensional materials. Finally, we provide an outlook on new strategies that can improve tSPL for future research and the fabrication of next-generation devices

    Capillary and van der Waals interactions on CaF crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

    Get PDF
    There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5-1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 3-4 nm above the surface when the formation of a capillary neck dominates the tip-sample interaction

    Quantification of interacting cognate odorants with olfactory receptors in nanovesicles

    Get PDF
    This study aims to improve our understanding of the interaction between olfactory receptors and odorants to develop highly selective biosensing devices. Natural nanovesicles (NVs) from Saccharomyces cerevisiae, ~100 nm in diameter, carrying either the human OR17-40 or the chimpanzee OR7D4 olfactory receptor (OR) tagged with the c-myc epitope at their N-terminus, are presented as model systems to quantify the interaction between odorant and olfactory receptors. The level of expression of olfactory receptors was determined at individual NVs using a novel competitive ELISA immunoassay comparing the values obtained against those from techniques involving the solubilization of cell membrane proteins and the identification of c-myc-carrying receptors. Surface Plasmon Resonance (SPR) measurements on L1 Biacore chips indicate that cognate odorants bind to their Ors, thereby quantifying the approximate number of odorants that interact with a given olfactory receptor. The selectivity of OR17-40-carrying NVs towards helional and OR7D4-carrying NVs towards androstenone has been proven in cross-check experiments with non-specific odorant molecules (heptanal and pentadecalactone, respectively) and in control receptors

    Multifrequency Force Microscopy of Helical Protein Assembly on a Virus

    Get PDF
    High-resolution microscopy techniques have been extensively used to investigate the structure of soft, biological matter at the nanoscale, from very thin membranes to small objects, like viruses. Electron microscopy techniques allow for obtaining extraordinary resolution by averaging signals from multiple identical structures. In contrast, atomic force microscopy (AFM) collects data from single entities. Here, it is possible to finely modulate the interaction with the samples, in order to be sensitive to their top surface, avoiding mechanical deformations. However, most biological surfaces are highly curved, such as fibers or tubes, and ultimate details of their surface are in the vicinity of steep height variations. This limits lateral resolution, even when sharp probes are used. We overcome this problem by using multifrequency force microscopy on a textbook example, the Tobacco Mosaic Virus (TMV). We achieved unprecedented resolution in local maps of amplitude and phase shift of the second excited mode, recorded together with sample topography. Our data, which combine multifrequency imaging and Fourier analysis, confirm the structure deduced from averaging techniques (XRD, cryoEM) for surface features of single virus particles, down to the helical pitch of the coat protein subunits, 2.3 nm. Remarkably, multifrequency AFM images do not require any image postprocessing

    Spatial mapping of the collagen distribution in human and mouse tissues by force volume atomic force microscopy

    Get PDF
    Changes in the elastic properties of living tissues during normal development and in pathological processes are often due to modifications of the collagen component of the extracellular matrix at various length scales. Force volume AFM can precisely capture the mechanical properties of biological samples with force sensitivity and spatial resolution. The integration of AFM data with data of the molecular composition contributes to understanding the interplay between tissue biochemistry, organization and function. The detection of micrometer-size, heterogeneous domains at different elastic moduli in tissue sections by AFM has remained elusive so far, due to the lack of correlations with histological, optical and biochemical assessments. In this work, force volume AFM is used to identify collagen-enriched domains, naturally present in human and mouse tissues, by their elastic modulus. Collagen identification is obtained in a robust way and affordable timescales, through an optimal design of the sample preparation method and AFM parameters for faster scan with micrometer resolution. The choice of a separate reference sample stained for collagen allows correlating elastic modulus with collagen amount and position with high statistical significance. The proposed preparation method ensures safe handling of the tissue sections guarantees the preservation of their micromechanical characteristics over time and makes it much easier to perform correlation experiments with different biomarkers independently

    Semi-quantitative risk assessment of African swine fever virus introduction in pig farms

    Get PDF
    A semi-quantitative risk assessment was developed to classify pig farms in terms of the probability of introduction of African swine fever virus (ASFV). Following on-farm data collection via a specific checklist, we applied a modified failure mode and effect analysis (FMEA) to calculate the risk priority codes (RPC's), indicating increasing risk levels ranging from 1 to 5. The importance of biosecurity measures was attributed by experts. To consider geographic risk factors, we classified pig farms based on local density of farmed pigs, and on the estimated wild boar population density. The combination of RPC's with geographical risk factors resulted into a final ranking of pig farms in terms of the risk of ASFV introduction. Furthermore, the estimation of frequency and levels of non-compliance with biosecurity measures was used to identify weak points in risk prevention at farm level. The outcome of the risk assessment was affected by choices in assigning non-compliance scores and importance to specific components of biosecurity. The method was applied in 60 commercial farms in major pig production areas in Italy. Furthermore, we applied a reduced version of our checklist in 12 non-commercial/small commercial (≤20 pigs) farms in the northern Apennines. In commercial farms, highest RPC's were obtained for biosecurity measures associated with personnel practices and farm buildings/planimetry. Intervention should be addressed to training of personnel on biosecurity and ASF, to avoid contacts with other pig herds, and to improve practices in the entrance into the farm. Sharing trucks with other farms, and loading/unloading of pigs were other weak points. Fencing was classified as insufficient in 70% of the commercial farms. Among these farms, breeding units were characterised by the lowest risk of ASFV introduction (although differences among median ranks were not statistically significant: P-value = 0.07; Kruskal–Wallis test), and increasing herd size was not significantly correlated with a higher risk (Kendall's τ = −0.13; P-value = 0.14). Density of farmed pig was greatest in the main pig production area in northern Italy. Conversely, exposure to wild boars was greatest for non-commercial/small commercial farms on the Apennines, which were also characterised by non-compliance with critical biosecurity measures

    Spatial defects nanoengineering for bipolar conductivity in MoS2

    Get PDF
    Understanding the atomistic origin of defects in two-dimensional transition metal dichalcogenides, their impact on the electronic properties, and how to control them is critical for future electronics and optoelectronics. Here, we demonstrate the integration of thermochemical scanning probe lithography (tc-SPL) with a flow-through reactive gas cell to achieve nanoscale control of defects in monolayer MoS2. The tc-SPL produced defects can present either p- or n-type doping on demand, depending on the used gasses, allowing the realization of field effect transistors, and p-n junctions with precise sub-μm spatial control, and a rectification ratio of over 104. Doping and defects formation are elucidated by means of X-Ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory. We find that p-type doping in HCl/H2O atmosphere is related to the rearrangement of sulfur atoms, and the formation of protruding covalent S-S bonds on the surface. Alternatively, local heating MoS2 in N2 produces n-character

    Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures

    Get PDF
    Magnonics is gaining momentum as an emerging technology for information processing. The wave character and Joule heating-free propagation of spin-waves hold promises for highly efficient computing platforms, based on integrated magnonic circuits. The realization of such nanoscale circuitry is crucial, although extremely challenging due to the difficulty of tailoring the nanoscopic magnetic properties with conventional approaches. Here we experimentally realize a nanoscale reconfigurable spin-wave circuitry by using patterned spin-textures. By space and time-resolved scanning transmission X-ray microscopy imaging, we directly visualize the channeling and steering of propagating spin-waves in arbitrarily shaped nanomagnonic waveguides, with no need for external magnetic fields or currents. Furthermore, we demonstrate a prototypic circuit based on two converging nanowaveguides, allowing for the tunable spatial superposition and interference of confined spin-waves modes. This work paves the way to the use of engineered spin-textures as building blocks of spin-wave based computing devices
    corecore