59 research outputs found

    Genetic Evidence for a Tacaribe Serocomplex Virus, Mexico

    Get PDF
    We isolated arenavirus RNA from white-toothed woodrats (Neotoma leucodon) captured in a region of Mexico in which woodrats are food for humans. Analyses of nucleotide and amino acid sequence data indicated that the woodrats were infected with a novel Tacaribe serocomplex virus, proposed name Real de Catorce virus

    GP38 as a Vaccine Target for Crimean-Congo Hemorrhagic Fever Virus

    Get PDF
    Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a tick-borne virus that causes severe hemorrhagic disease in humans. There is a great need for effective vaccines and therapeutics against CCHFV for humans, as none are currently internationally approved. Recently, a monoclonal antibody against the GP38 glycoprotein protected mice against lethal CCHFV challenge. To show that GP38 is required and sufficient for protection against CCHFV, we used three inactivated rhabdoviral-based CCHFV-M vaccines, with or without GP38 in the presence or absence of the other CCHFV glycoproteins. All three vaccines elicited strong antibody responses against the respective CCHFV glycoproteins. However, only vaccines containing GP38 showed protection against CCHFV challenge in mice; vaccines without GP38 were not protective. The results of this study establish the need for GP38 in vaccines targeting CCHFV-M and demonstrate the efficacy of a CCHFV vaccine candidate based on an established vector platform

    The endonucleolytic RNA cleavage function of nsp1 of middle east respiratory syndrome coronavirus promotes the production of infectious virus particles in specific human cell lines

    Get PDF
    Middle East respiratory syndrome coronavirus (MERS-CoV) nsp1 suppresses host gene expression in expressed cells by inhibiting translation and inducing endonucleolytic cleavage of host mRNAs, the latter of which leads to mRNA decay. We examined the biological functions of nsp1 in infected cells and its role in virus replication by using wild-type MERS-CoV and two mutant viruses with specific mutations in the nsp1; one mutant lacked both biological functions, while the other lacked the RNA cleavage function but retained the translation inhibition function. In Vero cells, all three viruses replicated efficiently with similar replication kinetics, while wild-type virus induced stronger host translational suppression and host mRNA degradation than the mutants, demonstrating that nsp1 suppressed host gene expression in infected cells. The mutant viruses replicated less efficiently than wild-type virus in Huh-7 cells, HeLa-derived cells, and 293-derived cells, the latter two of which stably expressed a viral receptor protein. In 293-derived cells, the three viruses accumulated similar levels of nsp1 and major viral structural proteins and did not induce IFN-β and IFN-λ mRNAs; however, both mutants were unable to generate intracellular virus particles as efficiently as wild-type virus, leading to inefficient production of infectious viruses. These data strongly suggest that the endonucleolytic RNA cleavage function of the nsp1 promoted MERS-CoV assembly and/or budding in a 293-derived cell line. MERS-CoV nsp1 represents the first CoV gene 1 protein that plays an important role in virus assembly/budding and is the first identified viral protein whose RNA cleavage-inducing function promotes virus assembly/budding. IMPORTANCE MERS-CoV represents a high public health threat. Because CoV nsp1 is a major viral virulence factor, uncovering the biological functions of MERS-CoV nsp1 could contribute to our understanding of MERS-CoV pathogenicity and spur development of medical countermeasures. Expressed MERS-CoV nsp1 suppresses host gene expression, but its biological functions for virus replication and effects on host gene expression in infected cells are largely unexplored. We found that nsp1 suppressed host gene expression in infected cells. Our data further demonstrated that nsp1, which was not detected in virus particles, promoted virus assembly or budding in a 293-derived cell line, leading to efficient virus replication. These data suggest that nsp1 plays an important role in MERS-CoV replication and possibly affects virus-induced diseases by promoting virus particle production in infected hosts. Our data, which uncovered an unexpected novel biological function of nsp1 in virus replication, contribute to further understanding of the MERS-CoV replication strategies

    Bear Canyon Virus: An Arenavirus Naturally Associated with the California Mouse (Peromyscus californicus)

    Get PDF
    Thirty-four rodents captured in southern California were studied to increase our knowledge of the arenaviruses indigenous to the western United States. An infectious arenavirus was isolated from 5 of 27 California mice but none of the 7 other rodents. Analyses of viral nucleocapsid protein gene sequence data indicated that the isolates from the California mice are strains of a novel Tacaribe serocomplex virus (proposed name “Bear Canyon”) that is phylogenetically most closely related to Whitewater Arroyo and Tamiami viruses, the only other Tacaribe serocomplex viruses known to occur in North America. The discovery of Bear Canyon virus is the first unequivocal evidence that the virus family Arenaviridae is naturally associated with the rodent genus Peromyscus and that a Tacaribe serocomplex virus occurs in California

    Reservoirs and vectors of emerging viruses

    Get PDF
    Wildlife, especially mammals and birds, are hosts to an enormous number of viruses, most of which we have absolutely no knowledge about even though we know these viruses circulate readily in their specific niches. More often than not, these viruses are silent or asymptomatic in their natural hosts. In some instances, they can infect other species, and in rare cases, this cross-species transmission might lead to human infection. There are also instances where we know the reservoir hosts of zoonotic viruses that can and do infect humans. Studies of these animal hosts, the reservoirs of the viruses, provide us with the knowledge of the types of virus circulating in wildlife species, their incidence, pathogenicity for their host, and in some instances, the potential for transmission to other hosts. This paper describes examples of some of the viruses that have been detected in wildlife, and the reservoir hosts from which they have been detected. It also briefly explores the spread of arthropod-borne viruses and their diseases through the movement and establishment of vectors in new habitats

    Testing and Validation of High Density Resequencing Microarray for Broad Range Biothreat Agents Detection

    Get PDF
    Rapid and effective detection and identification of emerging microbiological threats and potential biowarfare agents is very challenging when using traditional culture-based methods. Contemporary molecular techniques, relying upon reverse transcription and/or polymerase chain reaction (RT-PCR/PCR) provide a rapid and effective alternative, however, such assays are generally designed and optimized to detect only a limited number of targets, and seldom are capable of differentiation among variants of detected targets. To meet these challenges, we have designed a broad-range resequencing pathogen microarray (RPM) for detection of tropical and emerging infectious agents (TEI) including biothreat agents: RPM-TEI v 1.0 (RPM-TEI). The scope of the RPM-TEI assay enables detection and differential identification of 84 types of pathogens and 13 toxin genes, including most of the class A, B and C select agents as defined by the Centers for Disease Control and Prevention (CDC, Atlanta, GA). Due to the high risks associated with handling these particular target pathogens, the sensitivity validation of the RPM-TEI has been performed using an innovative approach, in which synthetic DNA fragments are used as templates for testing the assay's limit of detection (LOD). Assay specificity and sensitivity was subsequently confirmed by testing with full-length genomic nucleic acids of selected agents. The LOD for a majority of the agents detected by RPM-TEI was determined to be at least 104 copies per test. Our results also show that the RPM-TEI assay not only detects and identifies agents, but is also able to differentiate near neighbors of the same agent types, such as closely related strains of filoviruses of the Ebola Zaire group, or the Machupo and Lassa arenaviruses. Furthermore, each RPM-TEI assay results in specimen-specific agent gene sequence information that can be used to assess pathogenicity, mutations, and virulence markers, results that are not generally available from multiplexed RT-PCR/PCR-based detection assays
    corecore