170 research outputs found

    Peran Gaya Kepemimpinan Transformasional Memoderasi Pengaruh Motivasi Intrinsik dan Kecerdasan Emosional terhadap Kinerja Guru (Studi Kasus pada SMA Negeri di Kecamatan Pati Kabupaten Pati)

    Full text link
    This research is intended to examine the influence of motivation intrinsic and emotional intelligence to the state senior high school teachers\u27 work performance with the moderation of transformational leadership style. The specific purpose of this research is to examine the role of transformational leadership style moderates the influence of intrinsic motivation and emotional intelligence to the teachers\u27 work performance. The USAge of this research is to explain and expand the previous research about the role of transformational leadership style moderates the influence of intrinsic motivation and emotional intelligence to the teachers\u27 work performance. This research used the population of 116 teachers of state senior high school in Pati District, Pati Regency. The technique of sample collection used in this research is non-probability sampling with the purposive method. The analysis technique used in this research is regression model moderate quasi. Based on the research result can be conduded that: intrinsic motivation influences teachers\u27 work performance, emotional intelligence influences the teachers\u27 work performance, transformational leadership style do not moderate the influence of intrinsic motivation to teachers\u27 work performance, , transformational leadership style strengthen the influence of emotional intelligence to the teachers\u27 workperformance

    Quality Differences of Zhenghe White Tea from Different Altitudes

    Get PDF
    To explore the effect of growing altitude on the quality of Zhenghe white tea, the sensory quality and biochemical composition of tea leaves and Zhenghe white tea from different altitudes were evaluated, and multivariate statistical analysis was applied to the obtained data. The results of sensory evaluation showed that there were significant differences in the quality of white tea from different altitudes. The mid- and high-altitude white tea tasted fresh, mellow and clean with a clean and pure aroma, while the low-altitude white tea tasted mellow and thick with a floral aroma. Partial least squares discriminant analysis (PLS-DA) showed that soluble sugars, caffeine, 3-carene, verbenenol, terpene oleene, cis-2-pentenol, 2-ethylfuran and cis-2-hexene-1-alcohol were the key components to distinguish fresh tea leaves from different altitudes. The contents of soluble sugar, cis-2-hexene-1 alcohol and cis-2-pentenol were higher in the mid- and high-altitude samples, while the contents of volatile components such as caffeine, 3-carene, verbenol and terpinolene were higher in the low-altitude samples. Soluble sugar, free amino acid, terpinolene, verbenol, 2-ethyl furan, 2-methylbutyraldehyde, 2-phenylethanol and 3-carene were the key components to distinguish white tea from different altitudes. The contents of soluble sugar and free amino acid were higher in the high-altitude white tea, and the contents of volatile components such as terpinolene, verbenol, phenyl ethanol and 3-carene were higher in the mid- and low-altitude samples, but low in the high-altitude samples. According to odor activity value (OAV) analysis, 2-methyl butyl aldehyde, 3-carene and terpinolene could be used as the characteristic volatile components to identify white tea samples from different altitudes. The results of this study will provide a reference for further exploring the flavor quality of tea from different altitudes

    Integrative analysis of transcriptome and miRNAome reveals molecular mechanisms regulating pericarp thickness in sweet corn during kernel development

    Get PDF
    Pericarp thickness affects the edible quality of sweet corn (Zea mays L. saccharata Sturt.). Therefore, breeding varieties with a thin pericarp is important for the quality breeding of sweet corn. However, the molecular mechanisms underlying the pericarp development remain largely unclear. We performed an integrative analysis of mRNA and miRNA sequencing to elucidate the genetic mechanism regulating pericarp thickness during kernel development (at 15 days, 19 days, and 23 days after pollination) of two sweet corn inbred lines with different pericarp thicknesses (M03, with a thinner pericarp and M08, with a thicker pericarp). A total of 2,443 and 1,409 differentially expressed genes (DEGs) were identified in M03 and M08, respectively. Our results indicate that phytohormone-mediated programmed cell death (PCD) may play a critical role in determining pericarp thickness in sweet corn. Auxin (AUX), gibberellin (GA), and brassinosteroid (BR) signal transduction may indirectly mediate PCD to regulate pericarp thickness in M03 (the thin pericarp variety). In contrast, abscisic acid (ABA), cytokinin (CK), and ethylene (ETH) signaling may be the key regulators of pericarp PCD in M08 (the thick pericarp variety). Furthermore, 110 differentially expressed microRNAs (DEMIs) and 478 differentially expressed target genes were identified. miRNA164-, miRNA167-, and miRNA156-mediated miRNA–mRNA pairs may participate in regulating pericarp thickness. The expression results of DEGs were validated by quantitative real-time PCR. These findings provide insights into the molecular mechanisms regulating pericarp thickness and propose the objective of breeding sweet corn varieties with a thin pericarp

    Downregulation of nuclear STAT2 protein in the spinal dorsal horn is involved in neuropathic pain following chronic constriction injury of the rat sciatic nerve

    Get PDF
    Regulation of gene transcription in the spinal dorsal horn (SDH) plays a critical role in the pathophysiology of neuropathic pain. In this study, we investigated whether the transcription factor STAT2 affects neuropathic pain and evaluated its possible mechanisms. A proteomic analysis showed that the nuclear fraction of STAT2 protein in the SDH was downregulated after chronic constriction injury of the rat sciatic nerve, which was associated with the development of neuropathic pain. Similarly, siRNA-induced downregulation of STAT2 in the SDH of naΓ―ve rats also resulted in pain hypersensitivity. Using RNA-sequencing analysis, we showed that reduction of nuclear STAT2 after chronic constriction injury was associated with increased expression of microglial activation markers, including the class II transactivator and major histocompatibility complex class II proteins. In addition, siRNA-induced downregulation of STAT2 promoted microglial activation and pro-inflammatory cytokine expression in the SDH. Taken together, these results showed that chronic constriction injury caused downregulation of nuclear STAT2 in the SDH, which may result in microglial activation and development of neuropathic pain. Our findings indicate that restoration of nuclear expression of STAT2 could be a potential pathway for the treatment of neuropathic pain

    The RNA landscape of Dunaliella salina in response to short-term salt stress

    Get PDF
    Using the halotolerant green microalgae Dunaliella salina as a model organism has special merits, such as a wide range of salt tolerance, unicellular organism, and simple life cycle and growth conditions. These unique characteristics make it suitable for salt stress study. In order to provide an overview of the response of Dunaliella salina to salt stress and hopefully to reveal evolutionarily conserved mechanisms of photosynthetic organisms in response to salt stress, the transcriptomes and the genome of the algae were sequenced by the second and the third-generation sequencing technologies, then the transcriptomes under salt stress were compared to the transcriptomes under non-salt stress with the newly sequenced genome as the reference genome. The major cellular biological processes that being regulated in response to salt stress, include transcription, protein synthesis, protein degradation, protein folding, protein modification, protein transport, cellular component organization, cell redox homeostasis, DNA repair, glycerol synthesis, energy metabolism, lipid metabolism, and ion homeostasis. This study gives a comprehensive overview of how Dunaliella salina responses to salt stress at transcriptomic level, especially characterized by the nearly ubiquitous up-regulation of the genes involving in protein folding, DNA repair, and cell redox homeostasis, which may confer the algae important mechanisms to survive under salt stress. The three fundamental biological processes, which face huge challenges under salt stress, are ignored by most scientists and are worth further deep study to provide useful information for breeding economic important plants competent in tolerating salt stress, other than only depending on the commonly acknowledged osmotic balance and ion homeostasis

    Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer's disease

    Get PDF
    BACKGROUND: Berberine is the major alkaloidal component of Rhizoma coptidis, and has multiple pharmacological effects including inhibiting acetylcholinesterase, reducing cholesterol and glucose, lowering mortality in patients with chronic congestive heart failure and anti-inflammation etc. Thus berberine is a promising drug for diabetes, hyperlipemia, coronary artery disease and ischemic stroke etc. The present study was carried out to investigate the effect of berberine chloride on the spatial memory, inflammation factors interleukin-1 beta (IL-1beta) and inducible nitric oxide synthase (iNOS) expression in the rat model of Alzheimer's disease (AD) which was established by injecting Abeta (1–40) (5 microgram) into the rats hippocampuses bilaterally. RESULTS: The rats were given berberine chloride (50 mg/kg) by intragastric administration once daily for 14 days. The spatial memory was assayed by Morris water maze test, IL-1beta and iNOS in the hippocampus were assayed by immunohistochemistry and real time polymerase chain reaction (PCR). Intragastric administration of berberine significantly ameliorated the spatial memory impairment and increased the expression of IL-1beta, iNOS in the rat model of AD. CONCLUSION: Berberine might be beneficial to AD by intragastric administration though it might exaggerate the inflammation reaction

    Synthesis of a Dual Functional Anti-MDR Tumor Agent PH II-7 with Elucidations of Anti-Tumor Effects and Mechanisms

    Get PDF
    Multidrug resistance mediated by P-glycoprotein in cancer cells has been a major issue that cripples the efficacy of chemotherapy agents. Aimed for improved efficacy against resistant cancer cells, we designed and synthesized 25 oxindole derivatives based on indirubin by structure-activity relationship analysis. The most potent one was named PH II-7, which was effective against 18 cancer cell lines and 5 resistant cell lines in MTT assay. It also significantly inhibited the resistant xenograft tumor growth in mouse model. In cell cycle assay and apoptosis assay conducted with flow cytometry, PH II-7 induced S phase cell cycle arrest and apoptosis even in resistant cells. Consistently revealed by real-time PCR, it modulates the expression of genes related to the cell cycle and apoptosis in these cells, which may contributes to its efficacy against them. By side-chain modification and FITC-labeling of PH II-7, we were able to show with confocal microscopy that not only it was not pumped by P-glycoprotein, it also attenuated the efflux of Adriamycin by P-glycoprotein in MDR tumor cells. Real-time PCR and western blot analysis showed that PH II-7 down-regulated MDR1 gene via protein kinase C alpha (PKCA) pathway, with c-FOS and c-JUN as possible mediators. Taken together, PH II-7 is a dual-functional compound that features both the cytotoxicity against cancer cells and the inhibitory effect on P-gp mediated drug efflux

    A heterozygous moth genome provides insights into herbivory and detoxification

    Get PDF
    How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al
    • …
    corecore