222 research outputs found

    Graphical Encoding of a Spatial Logic for the pi-Calculus

    Get PDF
    This paper extends our graph-based approach to the verification of spatial properties of π-calculus specifications. The mechanism is based on an encoding for mobile calculi where each process is mapped into a graph (with interfaces) such that the denotation is fully abstract with respect to the usual structural congruence, i.e., two processes are equivalent exactly when the corresponding encodings yield isomorphic graphs. Behavioral and structural properties of π-calculus processes expressed in a spatial logic can then be verified on the graphical encoding of a process rather than on its textual representation. In this paper we introduce a modal logic for graphs and define a translation of spatial formulae such that a process verifies a spatial formula exactly when its graphical representation verifies the translated modal graph formula

    Effective representation of RT-LOTOS terms by finite time petri nets

    Get PDF
    The paper describes a transformational approach for the specification and formal verification of concurrent and real-time systems. At upper level, one system is specified using the timed process algebra RT-LOTOS. The output of the proposed transformation is a Time Petri net (TPN). The paper particularly shows how a TPN can be automatically constructed from an RT-LOTOS specification using a compositionally defined mapping. The proof of the translation consistency is sketched in the paper and developed in [1]. The RT-LOTOS to TPN translation patterns formalized in the paper are being implemented. in a prototype tool. This enables reusing TPNs verification techniques and tools for the profit of RT-LOTOS

    On Asynchronous Session Semantics

    Get PDF
    This paper studies a behavioural theory of the π-calculus with session types under the fundamental principles of the practice of distributed computing — asynchronous communication which is order-preserving inside each connection (session), augmented with asynchronous inspection of events (message arrivals). A new theory of bisimulations is introduced, distinct from either standard asynchronous or synchronous bisimilarity, accurately capturing the semantic nature of session-based asynchronously communicating processes augmented with event primitives. The bisimilarity coincides with the reduction-closed barbed congruence. We examine its properties and compare them with existing semantics. Using the behavioural theory, we verify that the program transformation of multithreaded into event-driven session based processes, using Lauer-Needham duality, is type and semantic preserving

    Hybrid Session Verification through Endpoint API Generation

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2016.This paper proposes a new hybrid session verification methodology for applying session types directly to mainstream languages, based on generating protocol-specific endpoint APIs from multiparty session types. The API generation promotes static type checking of the behavioural aspect of the source protocol by mapping the state space of an endpoint in the protocol to a family of channel types in the target language. This is supplemented by very light run-time checks in the generated API that enforce a linear usage discipline on instances of the channel types. The resulting hybrid verification guarantees the absence of protocol violation errors during the execution of the session. We implement our methodology for Java as an extension to the Scribble framework, and use it to specify and implement compliant clients and servers for real-world protocols such as HTTP and SMTP

    Objects as session-typed processes

    Full text link
    A key idea in object-oriented programming is that objects encapsulate state and interact with each other by message exchange. This perspective suggests a model of computation that is inherently concurrent (to facilitate simultaneous mes-sage exchange) and that accounts for the effect of message exchange on an object’s state (to express valid sequences of state transitions). In this paper we show that such a model of computation arises naturally from session-based commu-nication. We introduce an object-oriented programming lan-guage that has processes as its only objects and employs lin-ear session types to express the protocols of message ex-change and to reason about concurrency and state. Based on various examples we show that our language supports the typical patterns of object-oriented programming (e.g., en-capsulation, dynamic dispatch, and subtyping) while guar-anteeing session fidelity in a concurrent setting. In addition, we show that our language facilitates new forms of expres-sion (e.g., type-directed reuse, internal choice), which are not available in current object-oriented languages. We have implemented our language in a prototype compiler

    In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles

    Get PDF
    To our knowledge, the present work reports the first in vivo observation of chlorophyll a fluorescence quenching induced by gold nanoparticles. Laser-induced fluorescence spectroscopy was used to collect in vivo chlorophyll a fluorescence, using a portable optical fiber-based spectrofluorimeter. Fluorescence quenching was observed for all plants submitted to the gold nanoparticle treatment, and both excitation wavelengths, 405 nm and 532 nm, were capable of detecting interactions between gold nanoparticles and plants. Our results also suggest that gold nanoparticles were able to translocate and accumulate in the soybean plants after seed inoculation.CNPqFUNDECTINCT - INO

    Antimicrobial and Photoantimicrobial Activities of Chitosan/CNPPV Nanocomposites

    Full text link
    Multidrug-resistant bacteria represent a global health and economic burden that urgently calls for new technologies to combat bacterial antimicrobial resistance. Here, we developed novel nanocomposites (NCPs) based on chitosan that display different degrees of acetylation (DAs), and conjugated polymer cyano-substituted poly(p-phenylene vinylene) (CNPPV) as an alternative approach to inactivate Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Chitosan's structure was confirmed through FT-Raman spectroscopy. Bactericidal and photobactericidal activities of NCPs were tested under dark and blue-light irradiation conditions, respectively. Hydrodynamic size and aqueous stability were determined by DLS, zeta potential (ZP) and time-domain NMR. TEM micrographs of NCPs were obtained, and their capacity of generating reactive oxygen species (ROS) under blue illumination was also characterized. Meaningful variations on ZP and relaxation time T2 confirmed successful physical attachment of chitosan/CNPPV. All NCPs exhibited a similar and shrunken spherical shape according to TEM. A lower DA is responsible for driving higher bactericidal performance alongside the synergistic effect from CNPPV, lower nanosized distribution profile and higher positive charged surface. ROS production was proportionally found in NCPs with and without CNPPV by decreasing the DA, leading to a remarkable photobactericidal effect under blue-light irradiation. Overall, our findings indicate that chitosan/CNPPV NCPs may constitute a valuable asset for the development of innovative strategies for inactivation and/or photoinactivation of bacteria. Keywords: photoantimicrobial activity; blue-light irradiation; chitosan; CNPPV; nanocomposites; E. coli; S. aureu

    Advanced mechanisms for service combination and transactions

    Get PDF
    Languages and models for service-oriented applications usually include primitives and constructs for exception and compensation handling. Exception handling is used to react to unexpected events while compensation handling is used to undo previously completed activities. In this chapter we investigate the impact of exception and compensation handling in message-based process calculi and the related theories developed within Sensoria
    corecore