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a  b  s  t  r  a  c  t

To  our  knowledge,  the  present  work  reports  the  first  in  vivo  observation  of  chlorophyll  a fluorescence
quenching  induced  by  gold  nanoparticles.  Laser-induced  fluorescence  spectroscopy  was  used  to collect
in  vivo  chlorophyll  a  fluorescence,  using  a portable  optical  fiber-based  spectrofluorimeter.  Fluorescence
quenching  was  observed  for all  plants  submitted  to  the  gold  nanoparticle  treatment,  and  both  excitation
wavelengths,  405 nm  and  532  nm,  were  capable  of  detecting  interactions  between  gold  nanoparticles
and  plants.  Our  results  also  suggest  that  gold  nanoparticles  were  able  to  translocate  and  accumulate  in
the soybean  plants  after  seed  inoculation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Chlorophyll fluorescence has been used as an accurate and non-
destructive probe of photosynthetic efficiency, which can directly
or indirectly reflect the impacts of environmental factors and
changes in the physiological state of the plants [1].  The photosyn-
thetic efficiency of many plants decreases when they are subjected
to stress conditions [2,3]. Therefore, chlorophyll fluorescence has
been used as a standard method to investigate the chlorophyll con-
tent in plants, identify plant class, and detect plant stresses caused
by nutrient deficiency, polluting agents, etc. [4].

Ultraviolet and visible (UV–Vis) light absorbed by green leaves
can induce two distinct regions of fluorescence, emissions in the
range of wavelengths between 400 nm and 600 nm (blue/green
fluorescence) and between 600 nm and 800 nm (red/far-red
fluorescence). The blue/green fluorescence is associated with sev-
eral leaf fluorophores such as hydroxycinnamic acids, flavonols,
isoflavones, flavanones, and phenolic acids; while, in vivo, the
red/far-red fluorescence is produced only by chlorophyll a (Chla)
[5]. In the red/far-red region, most of the fluorescence, with maxima
at 685 nm and 735 nm,  is emitted by Chla in photosystem II (PSII) at
room temperature. Nevertheless, a small fluorescence contribution

∗ Corresponding author. Tel.: +55 67 34102088; fax: +55 67 34102072.
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from photosystem I (PSI) in the range between 710 nm and 720 nm
has been reported [5].

Engineered nanoparticles (ENPs) have recently received much
attention because of their industrial applications. A large number of
ENPs are already used in a wide range of consumer products; more
than 60% are in the field of health and fitness, including cosmetics
and personal-care products. Paints, coatings, textiles, electronics,
pharmaceuticals, environmental remediation, food, and food pack-
aging are other important applications [6].  An exponential growth
in the development, manufacture, and use of nanomaterials over
the past decade has followed the development of several benefi-
cial applications in a diverse range of products and areas, including
health and medicine, food production, energy, and environment
[7–9]. However, the production, use, and disposal of nanomateri-
als will inevitably lead to their release into the atmosphere, water,
and soil, and there are still uncertainties about the fate, behavior,
impacts, and toxicity of release into the environment [7–13]. In this
context, plants will not be able to avoid the environmental stress
that may  be induced by the increased release of ENPs into the bio-
sphere. Although a few papers have reported the impact of ENPs
on plants in recent years, many questions about the behavior and
fate of ENPs in plants remain unanswered [14]. Both positive and
negative effects have been reported, and the impact of ENPs on
plants varies, depending on the composition, concentration, size,
and physical and chemical properties of ENPs and plant species
[15].
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The efficiency in the production of chemical energy in the photo-
synthetic system can be strongly altered in the presence of metallic
nanoparticles [16]. Two competing effects could induce changes in
the efficiency of a photosystem: the increase in light absorption
by chlorophyll molecules, due to plasmon resonance (enhanced
local field near the metal surface [17]); and energy transfer from
chlorophyll to metallic nanoparticles, by inducing a decrease in the
quantum yield of the photosynthetic system. Recently, Barazzouk
et al. reported that the emission intensity of Chla could be quenched
by gold nanoparticles in a solution medium [18]. This quenching
has been attributed to the process of photoinduced electron trans-
fer from excited Chla to gold nanoparticles. The main aim of the
present study was to investigate which effect gold nanoparticles
can induce in the Chla fluorescence emitted by leaves, in an in vivo
analysis.

2. Materials and methods

2.1. Soybean preparation

Soybean [(Glycine max  L.) Merr.] seeds of the variety “BRS 245
RR”, with a germination percentage of 92%, were used in this study.
200 g of soybean seeds was treated with 0.6 ml  of fungicide (Derosal
Plus®, carbendazim, and thiram-200 ml  commercial formulation
100 kg−1 seeds) and 0.5 g of inoculant (Biomax 7.2 × 109 cfu/g). The
seeds were sown in pots with a volume of 3.26 dm3 containing
2500 cm3 of Rhodic Eutrudox soil. The soil in each pot was pre-
viously fertilized with 25 g of a 0–20–20 NPK commercial fertilizer
formulation. Four soybean seeds were sowed per pot. Two  weeks
after germination, two plants were left in each pot. The pots were
watered with a sufficient volume of tap water to maintain the soil
at 100% of field capacity. The plants were grown in a greenhouse at
room temperature.

2.2. Chlorophyll extraction

The chlorophyll extraction was conducted according to the pro-
tocol proposed by Richards and Thompson [19]. 3 g of soybean
leaves was added to 30 ml  of methanol P.A. and macerated for 2 min.
After that, the mixture was  stirred cold for 20 min  and then cen-
trifuged at 2000 rpm for 5 min. For the absorption and fluorescence
measurements, 1 ml  of the chlorophyll extract was diluted in 10 ml
of methanol P.A., obtaining a chlorophyll concentration of 5.46 �M.

2.3. Gold nanoparticles

Gold colloids with three different diameters: 5 nm,  10 nm,  and
20 nm were used in the present experiment. All gold colloids con-
tain approximately 0.01% HAuCl4 suspended in 0.01% tannic acid
with 0.04% trisodium citrate, 0.26 mM potassium carbonate, and
0.02% sodium azide as a preservative. The nanoparticles were pur-
chased from Sigma–Aldrich.

2.4. Fluorescence measurements

Fluorescence emission spectra of the chlorophyll extract
were measured using a fluorescence spectrophotometer (Cary
Eclipse, Varian). A portable optical fiber-based spectrofluorime-
ter (MM’Optics) was used to measure chlorophyll fluorescence in
leaves, specifically in the cotyledon, unifoliate leaf, and central
leaflet of the first fully expanded trifoliate leaf, as shown in Fig. 1.
The portable system is composed of (i) two excitation sources (at
405 nm and at 532 nm); (ii) one monochromator; and (iii) one type
Y optical fiber used to drive the excitation and emission lights
for the fluorescence measurements in plants. In both cases, the
molecules were excited at two wavelengths (405 nm and 532 nm),

Fig. 1. Soybean leaves: trifoliate (A), unifoliate (B) and cotyledon (C).

and the fluorescence spectra were collected from 600 to 800 nm.
Absorption was measured by means of a UV–Vis absorption spec-
trophotometer (Cary 50, Varian), and the absorption spectra were
collected from 490 to 610 nm.  Quartz cuvettes of 1-cm path length
were used to make absorption and fluorescence measurements in
the chlorophyll solution. All measurements were carried out at
room temperature.

2.5. In vivo analysis

The fluorescence analyses were carried out directly in the leaves.
The plants were divided into two groups: the control group, where
the seeds received the normal preparation as described in Section
2.1; and the group where GNPs were added to the solution that
was applied to the seeds before planting. 2.26 ml  of colloidal gold
nanoparticles (5 nm)  was diluted in 2.74 ml  of milli-Q water. Forty
plants were studied in this experiment; 20 plants were used as
controls, and 20 plants were treated with GNPs. For each group
the average spectrum over 20 plants was  taken to analyze the flu-
orescence behavior. The fluorescence signal was collected from
cotyledon leaves, unifoliate leaves, and trifoliate leaves from the
upper surface of the leaves.

A second experiment was  carried out, where the solution of
nanoparticles was applied directly on the leaf surface by means of
a syringe. The chlorophyll fluorescence of the central leaflet of the
first trifoliate leaf of 40 soybean plants was used for this exper-
iment. Twenty plants were used as a control, and the other 20
plants were treated with GNPs. 200 �l of the GNPs solution, at a
gold concentration of 33.86 mM,  was deposited directly on the bot-
tom surface of the central leaflet of the first trifoliate leaf, after the
development of the third trifoliate leaf. The same amount of solu-
tion, free of nanoparticles (milli-Q water), was deposited directly
on the bottom surface of the central leaflet of the first trifoliate leaf
of the control plants. The fluorescence signal was collected from
the upper surface of the central leaflet of the first trifoliate leaf.

3. Results and discussion

3.1. Chlorophyll extract

Aiming to characterize the interaction between gold nanoparti-
cles and chlorophyll molecules, we  started this study by analyzing
the interaction between the chlorophyll extract and gold nanopar-
ticles. As shown in Fig. 2, the 538-nm absorption band that is
characteristic of the surface plasmon band of gold nanoparticles
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Fig. 2. Increase of the absorbance at plasmon resonance in the chlorophyll extract
induced by nanoparticles of diameter 5 nm.  GNP concentration at: (a) zero, (b)
3.6  �M,  (c) 7.2 �M,  (d) 10.6 �M,  (e) 14.0 �M and (f) 17.3 �M.

increases as a function of nanoparticle concentration. This effect
is a result of the resonance plasmon absorption induced by gold
nanoparticle surfaces; the cooperative oscillation of free electrons
in the nanostructure is resonant with green light [20]. A linear
increase was observed for 5-nm, 10-nm, and 20-nm sized GNPs,
as shown in Fig. 3. However, the 20-nm GNPs showed the low-
est absorption effect as a function of the GNP concentration, and
an angular coefficient (ˇ) of 1.1 × 10−3 was obtained by fitting the
experimental data. The 5-nm and 10-nm GNPs showed a similar
angular coefficient of approximately 3.0 × 10−3. Nevertheless, it
is important to mention that the addition of nanoparticles in the
extract did not change the chlorophyll absorbance; the absorption
of chlorophyll extract containing GNPs was the sum of chlorophyll
and nanoparticle absorptions.

Fluorescence measurements of these same solutions of chloro-
phyll and GNPs were collected. Fig. 4 shows the typical fluorescence
spectra of chlorophyll molecules when excited at 405 nm and

Fig. 4. Fluorescence spectra of chlorophyll molecules in methanol solution. Excita-
tion light at: (a) 532 nm and (b) 405 nm.

532 nm.  Two  emission bands were observed between 625 and
800 nm,  the red and far-red bands with the maximum at 673 and
723 nm,  respectively. Although the results showed that chlorophyll
fluorescence induced by light at 405 nm was  8 times more intense
than the fluorescence induced by light at 532 nm,  both spectra had a
similar shape. The observed difference in the fluorescence intensity
may  be probably due to the highest absorbance of the samples at
405 nm.  Our results revealed that chlorophyll absorption at 405 nm
was about 10 times higher than absorption at 532 nm (data not
shown). Analyzing the F673/F723 ratio, we see that the fluorescence
intensity at 673 nm was 4.54 times more intense than the fluo-
rescence intensity at 723 nm,  for both excitation wavelengths. This
ratio is calculated on the basis of the relationship between the peak
fluorescence intensity at 673 to 723 nm.

When GNPs were added to the chlorophyll extract, there was no
change in the fluorescence spectrum shape. However, the results
showed that the GNPs induced a fluorescence quenching of the
chlorophyll molecules. The fluorescence quenching was observed
for both excitation wavelengths and for all GNP sizes. Table 1

Fig. 3. Absorbance of the plasmon resonance at 538 nm in the chlorophyll extract as a function of GNP concentration.
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Table 1
Chlorophyll fluorescence suppression as a function of GNP concentration and size, when excited at 405 nm and 532 nm.

[GNPs] (�M)  0.0 3.6 7.2 10.6 14.0 17.3

Fluorescence suppression (%)

Excitation at 405 nm
5 nm 0.00 1.10 2.21 4.70 6.87 8.95

10  nm 0.00 1.25 3.54 5.74 6.90 8.45
20  nm 0.00 0.90 2.85 5.65 5.77 6.78

Excitation at 532 nm
5 nm 0.00 1.00 2.26 6.44 7.76 10.36

10  nm 0.00 0.58 2.91 4.35 5.88 7.02
20  nm 0.00 0.00 0.46 0.95 1.00 2.20

shows the percentage of fluorescence suppression as a function
of GNP concentration. The suppression of chlorophyll fluorescence
was linear, as a function of the GNP concentration, and the high-
est suppression rate was observed in the solutions of 5-nm GNPs
for both excitation wavelengths. Fig. 5 shows that the plot of F0/F
versus [GNPs] is linear in the nanoparticle concentration range
studied, revealing that the quenching follows the Stern–Volmer
relation F0/F = 1 + Ksv[Q], where F0 and F are the fluorescence inten-
sities of chlorophyll in absence and presence of quencher Q (i.e.,
gold nanoparticles), respectively. Ksv is the Stern–Volmer quench-
ing constant. From the slope of the plot, we can observe that
there was a slight decrease in the quenching constant as a func-
tion of nanoparticle size when chlorophyll was excited at 405 nm.
However, a higher decrease was determined when fluorescence
analysis was performed by excitation at 532 nm where Ksv induced
by nanoparticles of diameter 5 nm was 6 times higher than that of
diameter 20 nm.  The fluorescence quenching of a chlorophyll solu-
tion induced by 8 nm GNPs was recently reported by Barazzouk
et al., who attributed this effect mainly to the process of pho-
toinduced electron transfer from excited chlorophyll to GNPs [18],
although the process of energy transfer was not ruled out because
of a small overlap between absorption of GNPs and fluorescence of
chlorophyll. They showed that the difference between the oxida-
tion potential of excited chlorophyll molecules and the Fermi level
of gold and the strong binding between chlorophyll and GNPs pro-
vide favorable conditions for electron transfer to occur. Therefore,
instead of the excited electrons of chlorophyll molecules returning
to the ground state emitting light radiation, the excited electrons

are transferred to the GNPs, resulting in a decrease of the fluores-
cence signal. Thus, the highest suppression observed for the 5-nm
GNPs solution was  due to the fact that for the same concentration
of GNPs, the samples prepared with 5-nm GNPs had the largest
surface area. As a consequence, the largest number of chlorophyll
molecules could be adsorbed on the surface of the nanoparticles,
inducing the largest number of electron transfers from the excited
chlorophyll to the GNPs.

3.2. In vivo analysis

Gold nanoparticles of 5 nm diameter were used to carry out
the in vivo analysis. This size was chosen for two  main reasons:
(1) the 5 nm-sized GNPs induced the highest suppression rate of
chlorophyll fluorescence in the extract analysis; (2) the smallest
size of nanoparticles could induce better penetration and translo-
cation of the nanoparticles in the plants. From our results, there
was no observed alteration in the germination process and in the
initial stage of plant growth induced by nanoparticles. Neverthe-
less, the results showed that the chlorophyll fluorescence bands
in vivo were shifted 12 nm to the red when compared with the
chlorophyll extract emission, and that the GNPs also induced a
quenching of chlorophyll fluorescence in the plants. The quenching
was observed for all plants submitted to the nanoparticle treat-
ment and for both excitation wavelengths, 405 nm and 532 nm,  as
shown in Figs. 6 and 7, respectively. Despite the observed suppres-
sion, both groups (plants submitted to nano particles and control
plants) had the same value of the F685/F735 ratio. The ratio of about
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Fig. 5. F0/F ratio at 673 nm as a function of GNP concentration for 5 nm,  10 nm,  and 20 nm nanoparticle diameters, respectively. F0 and F are the fluorescence intensities of
chlorophyll in absence and presence of gold nanoparticles. Excitation wavelength at 405 nm (above) and 532 nm (below).
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Fig. 6. Soybean plant fluorescence by excitation at 405 nm:  control plants (�) and plants submitted to nanoparticle treatment (�).

2.05 was determined for the leaves excited at 405 nm, and 1.08 for
the leaves excited at 532 nm.  We  can also observe that the overall
shape of the fluorescence spectrum depends on the wavelength of
the excitation light. Marcassa et al. reported a similar dependence in
their experiments, where chlorophyll fluorescence of orange trees
(Citrus aurantium L.) was obtained with excitation light at 443 nm
and 532 nm [21].

The cotyledon leaves showed the highest fluorescence inten-
sity suppression; the fluorescence quenching was  53% and 57%
for excitation at 405 nm and 532 nm,  respectively. The unifoliate
leaves showed a fluorescence suppression of 26% and 44% for exci-
tation at 405 nm and 532 nm,  respectively. The lowest fluorescence
suppression was observed for trifoliate leaves, where the fluores-
cence intensity of the leaves submitted to GNPs showed a reduction
of 17% and 6% for excitation at 405 nm and 532 nm,  respectively.
These results suggest that the GNPs were able to penetrate into the
seeds through the seed coats and translocate from seeds to leaves
in soybean plants. A recent study showed that carbon nanotubes
are able to penetrate the seed coat of tomato seeds [22]. Another
study showed that pumpkin plants (Cucurbita maxima) grown in
an aqueous medium containing iron oxide nanoparticles were able
to absorb, translocate, and accumulate the nanoparticles in plant
tissues [23]. The study showed that about 0.6% of the nanoparticles
supplied were accumulated in the leaves, and 45.4% of the nanopar-
ticles were detected in the roots. Lin et al. also showed that fullerene
C70 could be easily taken up by roots and transported to shoots, in
an experiment using rice plants (Oryza sativa)  [24].

In the present study, the highest suppression detected in the
cotyledon leaves revealed that the GNPs concentration was  highest
in these leaves. This result was expected, because cotyledon leaves
originate from the seed, and the nanoparticles were deposited
directly on the seed. In contrast, the lowest fluorescence quenching

was observed for the trifoliate leaves, the tallest leaves and the last
leaves to sprout. The fluorescence quenching could be attributed to
the presence of GNPs in the leaves, because, as observed in the pre-
vious results, the excited electron of chlorophyll molecules can be
transferred to GNPs, inducing the increase of non-photochemical
quenching in plants. However, in the in vivo analysis, other mecha-
nisms could be involved in the suppression of the fluorescence. For
example, the presence of nanoparticles can inhibit the photosyn-
thetic electron transport, inducing a dissipation of energy through
non-photochemical processes. Changes in photosynthetic activ-
ity induced by ENPs in green algae (Chlamydomonas reinhardtii)
were recently shown by Saison et al. They showed that copper
oxide nanoparticles covered with polystyrene (core–shell type)
induced cellular aggregation processes, and had a deteriorative
effect on chlorophyll by inducing the photoinhibition of photosys-
tem II. This inhibition of photosynthetic electron transport induced
a strong dissipation of energy by non-photochemical processes
[25]. In plants, reductions in chlorophyll fluorescence can also be
associated with damage to reaction centers and the efficiency of
electron transport in photosystem II [26]. In fact, the reorganization
of the photosynthetic machinery, including changes in the size of
the antenna complex, adjustments in chlorophyll and protein con-
tents, and in the range of alternative energy-dissipation pathways
have been reported as responses to stressors [27]. However, the
same value of the F685/F735 ratio obtained for the plants submitted
to nanoparticle treatment and the control plants suggest that the
effect of chlorophyll excited-electron transfer to gold nanoparticles
was probably the dominant process in the chlorophyll quenching.
This assumption stems from the expectation that environmental
stresses can modify the chlorophyll concentration, and it is well
known that the F685/F735 ratio is a good indicator of the chloro-
phyll content and can be used as a non-destructive measure of

Fig. 7. Soybean plant fluorescence by excitation at 532 nm:  control plants (�) and plants submitted to nanoparticle treatment (�).
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chlorophyll concentration [4].  In fact, most environmental stresses
are expected to slowly modify the chlorophyll concentration [6].  In
a recent report, our group showed that the F685/F735 can be used to
detect water stress in soybean plants and to distinguish transgenic
from conventional plants [28].

The results of an additional analysis, where nanoparticles were
deposited directly on the leaf surface, showed that the presence of
GNPs on leaves induced a suppression of 22% and 19% in the fluo-
rescence intensity emitted by leaves when excited at 405 nm and
532 nm,  respectively. These results confirm that the presence of
nanoparticles on leaves can be responsible for the chlorophyll flu-
orescence suppression. As the nanoparticles were deposited on the
bottom surface of the leaves and the fluorescence measurements
were carried out on the upper surface of the leaves, there was no
contribution of the shadow effect (by blocking the light absorp-
tion) to the fluorescence quenching. Therefore, the results suggest
that the GNPs were able to penetrate the leaf surface, possibly
through the stomatal aperture, and to interact with the photo-
synthetic apparatus. This indication is supported by recent studies
which have been reported that nanoparticles can be taken up by
plants via the stomatal pores [29,30].

4. Conclusions

The data revealed that gold nanoparticles induce quenching
of chlorophyll fluorescence, and that the quenching depends on
the particle size and concentration. This phenomenon is mainly
attributed to the effect of photoinduced electron transfer from
excited chlorophyll molecules to gold nanoparticles, resulting in a
decreased chlorophyll fluorescence signal. The largest fluorescence
suppression effect was induced by gold nanoparticles sized 5 nm.
This effect was due to the largest surface area available for molecu-
lar adsorption on nanoparticles, for sample solutions with the same
concentration of GNPs. Because the available nanoparticle surface
area also depends on the concentration of the nanoparticles, the
degree of chlorophyll fluorescence suppression was  dependent on
the GNPs concentration.

This study has provided the first in vivo observation of chloro-
phyll fluorescence quenching induced by gold nanoparticles. The
results showed that laser-induced fluorescence spectroscopy can
be used to investigate the alterations in the physiological response
of plants induced by gold nanoparticles, and that both excitation
wavelengths, 405 nm and 532 nm,  were able to detect the presence
of the gold nanoparticles inside the plants. Despite nanoparti-
cles have been deposited on the seeds, the interaction between
nanoparticles and the supramolecular light-harvesting complex of
photosystem II was observed in the later stages of plant develop-
ment. The results suggest that the GNPs were able to penetrate into
the seeds and translocate to the leaves. The data also suggest that
different concentrations of nanoparticles were accumulated in the
cotyledon, unifoliate, and trifoliate leaves. The highest nanoparti-
cle concentration was observed in the cotyledon leaves, and the
lowest accumulation of nanoparticles was detected in the trifoliate
leaves. Nevertheless, in spite of these advances, it is evident that
further investigations must be conducted to clarify the processes
of penetration, translocation, and accumulation of nanoparticles in
plants.
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