20 research outputs found

    VEGFA Family Isoforms Regulate Spermatogonial Stem Cell Homeostasis \u3ci\u3ein Vivo\u3c/i\u3e

    Get PDF
    The objective of the present study was to investigate vascular endothelial growth factor A (VEGFA) isoform regulation of cell fate decisions of spermatogonial stem cells (SSC) in vivo. The expression pattern and cell-specific distribution of VEGF isoforms, receptors, and coreceptors during testis development postnatal d 1–180 suggest a nonvascular function for VEGF regulation of early germ cell homeostasis. Populations of undifferentiated spermatogonia present shortly after birth were positive for VEGF receptor activation as demonstrated by immunohistochemical analysis. Thus, we hypothesized that proangiogenic isoforms of VEGF (VEGFA164) stimulate SSC self-renewal, whereas antiangiogenic isoforms of VEGF (VEGFA165b) induce differentiation of SSC. To test this hypothesis, we used transplantation to assay the stem cell activity of SSC obtained from neonatal mice treated daily from postnatal d 3–5 with 1) vehicle, 2) VEGFA164, 3) VEGFA165b, 4) IgG control, 5) anti-VEGFA164, and 6) anti-VEGFA165b. SSC transplantation analysis demonstrated that VEGFA164 supports self-renewal, whereas VEGFA165b stimulates differentiation of mouse SSC in vivo. Gene expression analysis of SSC-associated factors and morphometric analysis of germ cell populations confirmed the effects of treatment on modulating the biological activity of SSC. These findings indicate a nonvascular role for VEGF in testis development and suggest that a delicate balance between VEGFA164 and VEGFA165b isoforms orchestrates the cell fate decisions of SSC. Future in vivo and in vitro experimentation will focus on elucidating the mechanisms by which VEGFA isoforms regulate SSC homeostasis

    Endocrine Regulation of Spermatogonial Stem Cells in the Seminiferous Epithelium of Adult Mice

    Get PDF
    A balance between self-renewal and differentiation of spermatogonial stem cells (SSCs) is required to maintain sperm production throughout male life. The seminiferous epithelium is organized into stages of spermatogenesis based on the complement of germ cell types within a tubular section of the testis. The stages exist in close physical proximity and foster diverse phases of germ cell development despite exposure to a similar endocrine milieu that supports coordinated spermatogenesis. The objective of the current study was to identify the population dynamics of SSCs in vivo . We hypothesized that SSC populations and their niches are specifically distributed across the mature seminiferous epithelium in the mouse testis. To test this hypothesis, we conducted stem cell transplantation of germ cells obtained from stage-specific clusters of seminiferous tubules representing areas of high responsiveness to follicle-stimulating hormone (IX–I), androgen (II–IV), and retinoid (V–VIII) signaling. Similarly, we analyzed the expression of genes linked with SSC activity in these groups of stages. No stage-specific differences in the colonization efficiency or the colony number were detected after SSC transplantation, indicating that SSCs are equally distributed across all stages of the seminiferous tubule. In contrast, SSCs obtained from donor stages IX–IV established larger donor-derived colonies due to increased colony expansion. SSCs originating from different stages have varying degrees of stem cell activity in vivo , a notion consistent with Gdnf , Ret , and Bcl6b expression data. These results support the conclusion of a stage-specific, microenvironment-regulating SSC self-renewal and suggest the presence of a transit-amplifying population of undifferentiated spermatogonia in vivo

    VEGFA Family Isoforms Regulate Spermatogonial Stem Cell Homeostasis in Vivo

    No full text
    The objective of the present study was to investigate vascular endothelial growth factor A (VEGFA) isoform regulation of cell fate decisions of spermatogonial stem cells (SSC) in vivo. The expression pattern and cell-specific distribution of VEGF isoforms, receptors, and coreceptors during testis development postnatal d 1–180 suggest a nonvascular function for VEGF regulation of early germ cell homeostasis. Populations of undifferentiated spermatogonia present shortly after birth were positive for VEGF receptor activation as demonstrated by immunohistochemical analysis. Thus, we hypothesized that proangiogenic isoforms of VEGF (VEGFA164) stimulate SSC self-renewal, whereas antiangiogenic isoforms of VEGF (VEGFA165b) induce differentiation of SSC. To test this hypothesis, we used transplantation to assay the stem cell activity of SSC obtained from neonatal mice treated daily from postnatal d 3–5 with 1) vehicle, 2) VEGFA164, 3) VEGFA165b, 4) IgG control, 5) anti-VEGFA164, and 6) anti-VEGFA165b. SSC transplantation analysis demonstrated that VEGFA164 supports self-renewal, whereas VEGFA165b stimulates differentiation of mouse SSC in vivo. Gene expression analysis of SSC-associated factors and morphometric analysis of germ cell populations confirmed the effects of treatment on modulating the biological activity of SSC. These findings indicate a nonvascular role for VEGF in testis development and suggest that a delicate balance between VEGFA164 and VEGFA165b isoforms orchestrates the cell fate decisions of SSC. Future in vivo and in vitro experimentation will focus on elucidating the mechanisms by which VEGFA isoforms regulate SSC homeostasis

    Cat GPS data by cat, season, and day/night

    No full text
    Free-ranging cat GPS data for 2010-2011 by cat, season, and day/nigh

    Cat scat processing data

    No full text
    Free-ranging cat scat data with processed components, including bones, teeth, and hai

    Data from: Free-ranging farm cats: home range size and predation on a livestock unit in Northwest Georgia

    No full text
    This study’s objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P < 0.0001) diurnal and nocturnal home ranges as compared to altered cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife

    Free-ranging farm cats: home range size and predation on a livestock unit in Northwest Georgia.

    No full text
    This study's objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P < 0.0001) diurnal and nocturnal home ranges as compared to altered cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife

    Genome-wide association study for carcass weight in pasture-finished beef cattle in Hawai’i

    Get PDF
    Introduction: Genome-wide association studies (GWAS) have identified genetic markers for cattle production and reproduction traits. Several publications have reported Single Nucleotide Polymorphisms (SNPs) for carcass-related traits in cattle, but these studies were rarely conducted in pasture-finished beef cattle. Hawai’i, however, has a diverse climate, and 100% of its beef cattle are pasture-fed.Methods: Blood samples were collected from 400 cattle raised in Hawai’i islands at the commercial harvest facility. Genomic DNA was isolated, and 352 high-quality samples were genotyped using the Neogen GGP Bovine 100 K BeadChip. SNPs that did not meet the quality control standards were removed using PLINK 1.9, and 85 k high-quality SNPs from 351 cattle were used for association mapping with carcass weight using GAPIT (Version 3.0) in R 4.2. Four models were used for the GWAS analysis: General Linear Model (GLM), the Mixed Linear Model (MLM), the Fixed and Random Model Circulating Probability Unification (FarmCPU), the Bayesian-Information and Linkage-Disequilibrium Iteratively Nested Keyway (BLINK).Results and Discussion: Our results indicated that the two multi-locus models, FarmCPU and BLINK, outperformed single-locus models, GLM and MLM, in beef herds in this study. Specifically, five significant SNPs were identified using FarmCPU, while BLINK and GLM each identified the other three. Also, three of these eleven SNPs (“BTA-40510-no-rs”, “BovineHD1400006853”, and “BovineHD2100020346”) were shared by multiple models. The significant SNPs were mapped to genes such as EIF5, RGS20, TCEA1, LYPLA1, and MRPL15, which were previously reported to be associated with carcass-related traits, growth, and feed intake in several tropical cattle breeds. This confirms that the genes identified in this study could be candidate genes for carcass weight in pasture-fed beef cattle and can be selected for further breeding programs to improve the carcass yield and productivity of pasture-finished beef cattle in Hawai’i and beyond

    Home range estimates (ha; 95% kernel density estimation [KDE], 90% KDE, 50% KDE) for free-ranging domestic cats in Mount Berry, Georgia, USA across seasons.

    No full text
    <p>Home range estimates (ha; 95% kernel density estimation [KDE], 90% KDE, 50% KDE) for free-ranging domestic cats in Mount Berry, Georgia, USA across seasons.</p
    corecore