130 research outputs found

    Genotype-Phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures

    Get PDF
    Genetic susceptibility to multiple sclerosis (MS) is associated with the human leukocyte antigen (HLA) DRB1*1501 allele. Here we show a clear association between DRB1*1501 carrier status and four domains of disease severity in an investigation of genotype-phenotype associations in 505 robust, clinically well characterized MS patients evaluated cross-sectionally: (i) a reduction in the N-acetyl-aspartate (NAA) concentration within normal appearing white matter (NAWM) via 1HMR spectroscopy (P = 0.025), (ii) an increase in the volume of white matter (WM) lesions utilizing conventional anatomical MRI techniques (1,127 mm3; P = 0.031), (iii) a reduction in normalized brain parenchymal volume (nBPV) (P = 0.023), and (iv) impairments in cognitive function as measured by the Paced Auditory Serial Addition Test (PASAT-3) performance (Mean Z Score: DRB1*1501+: 0.110 versus DRB1*1501-: 0.048; P = 0.004). In addition, DRB1*1501+ patients had significantly more women (74% versus 63%; P = 0.009) and a younger mean age at disease onset (32.4 years versus 34.3 years; P = 0.025). Our findings suggest that DRB1*1501 increases disease severity in MS by facilitating the development of more T2-foci, thereby increasing the potential for irreversible axonal compromise and subsequent neuronal degeneration, as suggested by the reduction of NAA concentrations in NAWM, ultimately leading to a decline in brain volume. These structural aberrations may explain the significant differences in cognitive performance observed between DRB1*1501 groups. The overall goal of a deep phenotypic approach to MS is to develop an array of meaningful biomarkers to monitor the course of the disease, predict future disease behaviour, determine when treatment is necessary, and perhaps to more effectively recommend an available therapeutic interventio

    Report drawn up on behalf of the Committee on Economic and Monetary Affairs on the proposal from the Commission of the European Communities to the Council (Doc. 1-99/83-COM(83) 85 final) for a Council Decision implementing the decision empowering the Commission to borrow under the New Community Instrument for the purpose of promoting investment within the Community, Working Documents 1983-1984, Document 1-236/83, 3 May 1983

    Get PDF
    The 4MOST([1]) instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x10(6) spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z similar to 5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of similar to 1600 targets at R similar to 5,000 from 390-900nm and similar to 800 targets at R>18,000 in three channels between similar to 395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of similar to 4.1 degrees2. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: opto-mechanical, control, data management and operations concepts; and initial performance estimates

    Transcriptional dysregulation of Interferome in experimental and human Multiple Sclerosis

    Get PDF
    Recent evidence indicates that single multiple sclerosis (MS) susceptibility genes involved in interferon (IFN) signaling display altered transcript levels in peripheral blood of untreated MS subjects, suggesting that responsiveness to endogenous IFN is dysregulated during neuroinflammation. To prove this hypothesis we exploited the systematic collection of IFN regulated genes (IRG) provided by the Interferome database and mapped Interferome changes in experimental and human MS. Indeed, central nervous system tissue and encephalitogenic CD4 T cells during experimental autoimmune encephalomyelitis were characterized by massive changes in Interferome transcription. Further, the analysis of almost 500 human blood transcriptomes showed that (i) several IRG changed expression at distinct MS stages with a core of 21 transcripts concordantly dysregulated in all MS forms compared with healthy subjects; (ii) 100 differentially expressed IRG were validated in independent case-control cohorts; and (iii) 53 out of 100 dysregulated IRG were targeted by IFN-beta treatment in vivo. Finally, ex vivo and in vitro experiments established that IFN-beta administration modulated expression of two IRG, ARRB1 and CHP1, in immune cells. Our study confirms the impairment of Interferome in experimental and human MS, and describes IRG signatures at distinct disease stages which can represent novel therapeutic targets in MS

    Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS), a chronic disorder of the central nervous system and common cause of neurological disability in young adults, is characterized by moderate but complex risk heritability. Here we report the results of a genome-wide association study performed in a 1000 prospective case series of well-characterized individuals with MS and group-matched controls using the Sentrix® HumanHap550 BeadChip platform from Illumina. After stringent quality control data filtering, we compared allele frequencies for 551 642 SNPs in 978 cases and 883 controls and assessed genotypic influences on susceptibility, age of onset, disease severity, as well as brain lesion load and normalized brain volume from magnetic resonance imaging exams. A multi-analytical strategy identified 242 susceptibility SNPs exceeding established thresholds of significance, including 65 within the MHC locus in chromosome 6p21.3. Independent replication confirms a role for GPC5, a heparan sulfate proteoglycan, in disease risk. Gene ontology-based analysis shows a functional dichotomy between genes involved in the susceptibility pathway and those affecting the clinical phenotyp

    Role of the Epigenetic Regulator HP1γ in the Control of Embryonic Stem Cell Properties

    Get PDF
    The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along with transcription factors. We have focused our interest on the epigenetic modulator HP1γ (Heterochromatin Protein 1, isoform γ) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1γ make it a good candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference, we describe the functional role of HP1γ in mouse ESC. The analysis of HP1γ deprived cells in proliferative and in various differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We show that HP1γ deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions, rendering the cells poised to differentiate. In addition, HP1γ depletion hampers the differentiation to the endoderm as compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1γ in ESC self-renewal and in the balance between the pluripotent and the differentiation programs

    Genetic variation in the odorant receptors family 13 and the mhc loci influence mate selection in a multiple sclerosis dataset

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When selecting mates, many vertebrate species seek partners with major histocompatibility complex (MHC) genes different from their own, presumably in response to selective pressure against inbreeding and towards MHC diversity. Attempts at replication of these genetic results in human studies, however, have reached conflicting conclusions.</p> <p>Results</p> <p>Using a multi-analytical strategy, we report validated genome-wide relationships between genetic identity and human mate choice in 930 couples of European ancestry. We found significant similarity between spouses in the MHC at class I region in chromosome 6p21, and at the odorant receptor family 13 locus in chromosome 9. Conversely, there was significant dissimilarity in the MHC class II region, near the <it>HLA-DQA1 </it>and -<it>DQB1 </it>genes. We also found that genomic regions with significant similarity between spouses show excessive homozygosity in the general population (assessed in the HapMap CEU dataset). Conversely, loci that were significantly dissimilar among spouses were more likely to show excessive heterozygosity in the general population.</p> <p>Conclusions</p> <p>This study highlights complex patterns of genomic identity among partners in unrelated couples, consistent with a multi-faceted role for genetic factors in mate choice behavior in human populations.</p

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF
    We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses
    corecore