10 research outputs found

    Cell to cell communication : transfer of mitochondria from mesenchymal stem/stromal cells (MSC) to cancer cells

    No full text
    Au début de ma thèse, je me suis intéressé aux processus qui sous-tendent la communication cellulaire et plus spécifiquement les interactions cellule-cellule. Pourquoi une cellule établit-elle un contact spécifique avec une autre cellule ? Comment les cellules répondent-elles à cette interaction et quels en sont les effets ? J'ai utilisé comme modèle d'étude l'interaction entre les cellules souches/stromales mésenchymateuses (CSM) et des lignées de cancer du sein. L'objectif de mon travail a été d'analyser les mécanismes de ces interactions entre CSM et cellules cancéreuses et d'en évaluer les effets sur les fonctions des cellules cancéreuses. En effet, des mécanismes de recrutement des CSM aux sites tumoraux ont été décrits avec des effets sur la progression tumorale, ce qui ouvre par ailleurs des perspectives pour de nouvelles approches thérapeutiques. J'ai tout d'abord développé un système expérimental de microscopie confocale en temps réel pour observer le type d'interaction qui est produit entre les CSM humaines et les cellules de carcinomes mammaires MDA-MB-231 et MCF7. J'ai constaté la formation dynamique de structures tubulaires entre les deux types cellulaires et, de façon surprenante, le passage des mitochondries des CSM vers les cellules cancéreuses. En un deuxième temps, j'ai utilisé un système d'invasion dans une matrice 3D de collagène, que nous avons adapté à la coculture, afin d'observer les effets de l'interaction des MDA-MB-231 avec les CSM. En accord avec la littérature, nous avons constaté une augmentation du pouvoir invasif des cellules cancéreuses, effet qui pouvait être lié au transfert des mitochondries provenant des CSM. Pour répondre à cette question, j'ai mis au point un protocole pour transférer spécifiquement des mitochondries, isolées à partir de cellules, vers d'autres cellules. Ce protocole, exploité dans ce manuscrit pour le transfert de mitochondries de CSM vers les cellules cancéreuses MDA-MB-231, peut être transposé à d'autres types cellulaires et fait l'objet d'une demande de brevet. Nos données indiquent que l'acquisition de mitochondries de CSM par les cellules cancéreuses modifie leurs propriétés fonctionnelles et augmente leur capacité de prolifération et d'invasion. Concernant leur activité métabolique, on observe une augmentation de leur respiration mitochondriale et de leur production d'ATP. Nos données préliminaires suggèrent aussi une augmentation de l'expression transcriptionnelle d'enzymes impliquées dans la synthèse des lipides et l'oxydation des acides gras. Ces données, générées grâce au protocole de transfert artificiel de mitochondries mis au point, montrent pour la première fois que les mitochondries des CSM peuvent majorer certaines propriétés cellulaires liées à la progression tumorale, comme la prolifération et l'invasion, et contribuer à une reprogrammation métabolique des cellules cancéreuses. Elles s'intègrent au rôle proposé par la communauté scientifique pour les CSM dans le microenvironnement tumoral. La technique de transfert artificiel de mitochondries nous permettra de répondre à d'autres questions restées ouvertes, comme le rôle possible des mitochondries des CSM dans les résistances développées par les tumeurs vis-à-vis des agents anti-cancéreux. Le protocole de transfert de mitochondries développé au laboratoire constitue une technique de choix et offre de nombreux avantages comparativement à d'autres techniques comme la micro-injection et la génération des hybrides cytoplasmiques. Sa mise en œuvre est en effet simple et reproductible et permet de traiter une grande quantité de cellules. Cette méthode permet d'envisager de nombreuses perspectives et applications dans le domaine de la reprogrammation métabolique, comme par exemple de restaurer les capacités d'une cellule dysfonctionnelle par le transfert de mitochondries issues d'une cellule saine et « métaboliquement active ».At the beginning of my thesis, I was interested in the process involved in cell communication, more specifically in cell-to-cell interactions. Why does a cell specifically establish contacts with another one, how do cells respond to these interactions and what are the effects? As a model to answer these questions, I studied the interactions between MSCs and two breast cancer cell lines. The study of the communications between MSCs and tumor cells is an alternative to explore and understand tumor progression. MSC recruitment to the tumor is shown to favor the progression of the disease. The mechanisms of this dialogue are multiple and are the object of a great number of studies that aim at finding new therapeutic approaches. The objective of this work was to analyze the interactions between MSCs and cancer cells and evaluate the potential effects of this communication in tumor progression. First, I developed an experimental system of real time confocal microscopy in order to observe the interaction produced between MSCs and the breast carcinoma MDA-MB-231 and MCF-7 cells. I noticed the dynamic formation of tubular structures between the two different cell types and, surprisingly, the passage of mitochondria from MSCs to the cancer cells. Second, we used a 3D system of cell invasion in a collagen matrix, which we adapted for the coculture, in order to observe the effects of the interactions between the MDA-MB-231 and MSCs. In agreement with the literature, we observed an increase in the migratory potential of the cancer cells, an effect that could be linked to the transfer of mitochondria from MSCs to the cancer cells. To answer this question, I set up a protocol to specifically transfer to the cancer cells mitochondria isolated from the MSCs and test directly the functional consequences for the cancer cells. This protocol can be used to transfer mitochondria, not only from MSCs but also from other cells. This method is currently submitted to a patent process. Our results show that the transfer of MSC mitochondria to the cancer cells modifies cancer cells functional properties and increase their invasive and proliferative capacities. Concerning the metabolic activity, we noticed an increase in mitochondrial respiration and ATP production. We also observed an increase in the transcription level of enzymes related to the lipid synthesis and fatty acid oxidation. The results generated with this new protocol of mitochondria transfer show, for the first time, that mitochondria originating from MSCs can improve cellular capacities linked to the tumor progression. The role proposed by the scientific community for the interactions of MSCs with the tumor cells fits with the data generated in our work. Several questions remain open. In particular, could the transfer of mitochondria from MSCs to the cancer cells contribute to the acquisition of resistance to anti-cancer agents observed in patients? The protocol of transfer of mitochondria that we developed in the laboratory is a technique of choice and offers many advantages over other techniques such as microinjection and cytoplasmic hybrids; its implementation is simple and reproducible and can target large numbers of cells. This method opens numerous perspectives and potential applications such as the study of metabolic reprogramming. Thus, we could consider restoring the activity of dysfunctional cells by transferring mitochondria from “metabolically active” or healthy cells. In the long term, one of the applications could be transferring healthy or genetically modified mitochondria to zygotes carrying mitochondrial DNA mutations, in order to treat pathologies like infertility, neuro-degenerative diseases, cancer and premature aging

    Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy

    Get PDF
    International audienceIntercellular communications play a major role in tissue homeostasis and responses to external cues. Novel structures for this communication have recently been described. These tunneling nanotubes (TNTs) consist of thin-extended membrane protrusions that connect cells together. TNTs allow the cell-to-cell transfer of various cellular components, including proteins, RNAs, viruses, and organelles, such as mitochondria. Mesenchymal stem cells (MSCs) are both naturally present and recruited to many different tissues where their interaction with resident cells via secreted factors has been largely documented. Their immunosuppressive and repairing capacities constitute the basis for many current clinical trials. MSCs recruited to the tumor microenvironment also play an important role in tumor progression and resistance to therapy. MSCs are now the focus of intense scrutiny due to their capacity to form TNTs and transfer mitochondria to target cells, either in normal physiological or in pathological conditions, leading to changes in cell energy metabolism and functions, as described in this review

    Coxsackie and adenovirus receptor is a target and a mediator of estrogen action in breast cancer

    No full text
    International audienceThe involvement of the coxsackie and adenovirus receptor (CAR), an adhesion molecule known to be the main determinant of adenovirus transduction of the cells, in cancer is currently under investigation. Recent reports suggest that CAR levels are elevated in breast cancer, and this may have an impact on its use as means of delivery for gene therapy. In this study, we show that estradiol (E(2)) treatment of the estrogen receptor (ER)-positive breast cancer cell MCF-7 increases CAR levels and, in turn, enhances adenoviral transduction. Employing the transfection of CAR promoters in breast cancer cells, we show that this regulation of CAR expression occurs at the transcriptional level. In addition, and by chromatin immunoprecipitation, we have identified a crucial region of CAR promoter that controls E(2) responsiveness of CAR gene through the recruitment of ER. Moreover, utilizing CAR antibodies or CAR silencing by RNA interference repressed the estrogen-dependent growth of breast cancer cells, whereas the stable expression of CAR in MCF-7 or MDA-MB-231 cells led to an increased proliferation. Altogether, our data suggest that CAR is a novel estrogen-responsive gene, which is involved in the E(2)-dependent proliferation of breast cancer cells

    Serie estudios y evaluaciones de ciencia, tecnología e innovación Nº 012013

    No full text
    El estudio realiza un mapeo de los beneficiarios y no beneficiarios de los dos programas a evaluar. Adicionalmente, se realiza la revisión de la cadena de valor de los programas, y se definen indicadores de impacto. Para el apoyo a la formación doctoral, se analizan impactos en términos de la producción científica, la productividad de las empresas y la generación de ingresos para los beneficiarios. Para la evaluación de jóvenes investigadores se identifican impactos en términos de la producción científica generada por el joven en los grupos de investigación, y su continuidad en procesos de investigación. De igual forma, se realizan análisis cualitativos con los beneficiarios del programa y se estiman los costos y beneficios de este programa.Departamento Nacional de Ciencia, Tecnología e Innovación - COLCIENCIA

    Primary allogeneic mitochondrial mix (PAMM) transfer/transplant by MitoCeption to address damage in PBMCs caused by ultraviolet radiation

    No full text
    International audienceArtificial Mitochondrial Transfer or Transplant (AMT/T) can be used to reduce the stress and loss of viability of damaged cells. In MitoCeption, a type of AMT/T, the isolated mitochondria and recipient cells are centrifuged together at 4 °C and then co-incubated at 37 °C in normal culture conditions, inducing the transfer. Ultraviolet radiation (UVR) can affect mitochondria and other cell structures, resulting in tissue stress, aging, and immunosuppression. AMT/T could be used to repair UVR cellular and mitochondrial damage. We studied if a mitochondrial mix from different donors (Primary Allogeneic Mitochondrial Mix, PAMM) can repair UVR damage and promote cell survival

    Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer

    No full text
    International audienceBACKGROUND:Mesenchymal stem cells (MSCs) are multipotent cells with broad immunosuppressive capacities. Recently, it has been reported that MSCs can transfer mitochondria to various cell types, including fibroblast, cancer, and endothelial cells. It has been suggested that mitochondrial transfer is associated with a physiological response to cues released by damaged cells to restore and regenerate damaged tissue. However, the role of mitochondrial transfer to immune competent cells has been poorly investigated.METHODS AND RESULTS:Here, we analyzed the capacity of MSCs from the bone marrow (BM) of healthy donors (BM-MSCs) to transfer mitochondria to primary CD4+CCR6+CD45RO+ T helper 17 (Th17) cells by confocal microscopy and fluorescent-activated cell sorting (FACS). We then evaluated the Th17 cell inflammatory phenotype and bioenergetics at 4 h and 24 h of co-culture with BM-MSCs. We found that Th17 cells can take up mitochondria from BM-MSCs already after 4 h of co-culture. Moreover, IL-17 production by Th17 cells co-cultured with BM-MSCs was significantly impaired in a contact-dependent manner. This inhibition was associated with oxygen consumption increase by Th17 cells and interconversion into T regulatory cells. Finally, by co-culturing human synovial MSCs (sMSCs) from patients with rheumatoid arthritis (RA) with Th17 cells, we found that compared with healthy BM-MSCs, mitochondrial transfer to Th17 cells was impaired in RA-sMSCs. Moreover, artificial mitochondrial transfer also significantly reduced IL-17 production by Th17 cells.CONCLUSIONS:The present study brings some insights into a novel mechanism of T cell function regulation through mitochondrial transfer from stromal stem cells. The reduced mitochondrial transfer by RA-sMSCs might contribute to the persistence of chronic inflammation in RA synovitis

    IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production

    No full text
    International audienceThe aim of this work was to understand whether the nature of breast cancer cells could modify the nature of the dialog of mesenchymal stem cells (MSCs) with cancer cells. By treating MSCs with the conditioned medium of metastatic Estrogen-receptor (ER)-negative MDA-MB-231, or non-metastatic ER-positive MCF-7 breast cancer cells, we observed that a number of chemokines were produced at higher levels by MSCs treated with MDA-MB-231 conditioned medium (CM). MDA-MB-231 cells were able to induce NF-κB signaling in MSC cells. This was shown by the use of a NF-kB chemical inhibitor or an IκB dominant negative mutant, nuclear translocation of p65 and induction of NF-κB signature. Our results suggest that MDA-MB-231 cells exert their effects on MSCs through the secretion of IL-1β, that activates MSCs and induces the same chemokines as the MDA-MB-231CM. In addition, inhibition of IL-1β secretion in the MDA-MB-231 cells reduces the induced production of a panel of chemokines by MSCs, as well the motility of MDA-MB-231 cells. Our data suggest that aggressive breast cancer cells secrete IL-1β, which increases the production of chemokines by MSCs

    Public health impact and economic benefits of quadrivalent influenza vaccine in Latin America

    No full text
    Annual trivalent influenza vaccines (TIV) containing 2 A strains and one B lineage have been recommended for the prevention of influenza in most of Latin American countries. However, the circulation of 2 B lineages (Victoria and Yamagata) and difficulties in predicting the predominating lineage have led to the development of quadrivalent influenza vaccines (QIV), including both B lineages. Thus, the objective was to estimate the public health impact and influenza-related costs if QIV would have been used instead of TIV in 3 Latin American countries. We used a static model over the seasons 2010–2014 in Brazil, 2007–2014 in Colombia and 2006–2014 in Panama, focusing on population groups targeted by local vaccination recommendations: young children, adults with risk factors and the elderly. In Brazil, between 2010 and 2014, using QIV instead of TIV would have avoided US6,200per100,000personyearsinsocietalcosts,basedon168influenzacases,89consultations,3.2hospitalizationsand0.38deathsper100,000personyears.InColombiaandPanama,thesewouldhaverangedfromUS 6,200 per 100,000 person-years in societal costs, based on 168 influenza cases, 89 consultations, 3.2 hospitalizations and 0.38 deaths per 100,000 person-years. In Colombia and Panama, these would have ranged from US 1,000 to 12,700 (based on 34 cases, 13–25 consultations, 0.6–8.9 hospitalizations and 0.04–1.74 deaths) and from US$ 3,000 to 33,700 (based on 113 cases, 55–82 consultations, 0.5–27.8 hospitalizations and 0.08–6.87 deaths) per 100,000 person-years, respectively. Overall, the broader protection offered by QIV would have reduced the influenza humanistic and economic burden in the 3 countries. Despite the lack of local data leading to several extrapolations, this study is the first to give quantitative estimates of the potential benefits of QIV in Latin America
    corecore