Cell to cell communication : transfer of mitochondria from mesenchymal stem/stromal cells (MSC) to cancer cells

Abstract

Au début de ma thèse, je me suis intéressé aux processus qui sous-tendent la communication cellulaire et plus spécifiquement les interactions cellule-cellule. Pourquoi une cellule établit-elle un contact spécifique avec une autre cellule ? Comment les cellules répondent-elles à cette interaction et quels en sont les effets ? J'ai utilisé comme modèle d'étude l'interaction entre les cellules souches/stromales mésenchymateuses (CSM) et des lignées de cancer du sein. L'objectif de mon travail a été d'analyser les mécanismes de ces interactions entre CSM et cellules cancéreuses et d'en évaluer les effets sur les fonctions des cellules cancéreuses. En effet, des mécanismes de recrutement des CSM aux sites tumoraux ont été décrits avec des effets sur la progression tumorale, ce qui ouvre par ailleurs des perspectives pour de nouvelles approches thérapeutiques. J'ai tout d'abord développé un système expérimental de microscopie confocale en temps réel pour observer le type d'interaction qui est produit entre les CSM humaines et les cellules de carcinomes mammaires MDA-MB-231 et MCF7. J'ai constaté la formation dynamique de structures tubulaires entre les deux types cellulaires et, de façon surprenante, le passage des mitochondries des CSM vers les cellules cancéreuses. En un deuxième temps, j'ai utilisé un système d'invasion dans une matrice 3D de collagène, que nous avons adapté à la coculture, afin d'observer les effets de l'interaction des MDA-MB-231 avec les CSM. En accord avec la littérature, nous avons constaté une augmentation du pouvoir invasif des cellules cancéreuses, effet qui pouvait être lié au transfert des mitochondries provenant des CSM. Pour répondre à cette question, j'ai mis au point un protocole pour transférer spécifiquement des mitochondries, isolées à partir de cellules, vers d'autres cellules. Ce protocole, exploité dans ce manuscrit pour le transfert de mitochondries de CSM vers les cellules cancéreuses MDA-MB-231, peut être transposé à d'autres types cellulaires et fait l'objet d'une demande de brevet. Nos données indiquent que l'acquisition de mitochondries de CSM par les cellules cancéreuses modifie leurs propriétés fonctionnelles et augmente leur capacité de prolifération et d'invasion. Concernant leur activité métabolique, on observe une augmentation de leur respiration mitochondriale et de leur production d'ATP. Nos données préliminaires suggèrent aussi une augmentation de l'expression transcriptionnelle d'enzymes impliquées dans la synthèse des lipides et l'oxydation des acides gras. Ces données, générées grâce au protocole de transfert artificiel de mitochondries mis au point, montrent pour la première fois que les mitochondries des CSM peuvent majorer certaines propriétés cellulaires liées à la progression tumorale, comme la prolifération et l'invasion, et contribuer à une reprogrammation métabolique des cellules cancéreuses. Elles s'intègrent au rôle proposé par la communauté scientifique pour les CSM dans le microenvironnement tumoral. La technique de transfert artificiel de mitochondries nous permettra de répondre à d'autres questions restées ouvertes, comme le rôle possible des mitochondries des CSM dans les résistances développées par les tumeurs vis-à-vis des agents anti-cancéreux. Le protocole de transfert de mitochondries développé au laboratoire constitue une technique de choix et offre de nombreux avantages comparativement à d'autres techniques comme la micro-injection et la génération des hybrides cytoplasmiques. Sa mise en œuvre est en effet simple et reproductible et permet de traiter une grande quantité de cellules. Cette méthode permet d'envisager de nombreuses perspectives et applications dans le domaine de la reprogrammation métabolique, comme par exemple de restaurer les capacités d'une cellule dysfonctionnelle par le transfert de mitochondries issues d'une cellule saine et « métaboliquement active ».At the beginning of my thesis, I was interested in the process involved in cell communication, more specifically in cell-to-cell interactions. Why does a cell specifically establish contacts with another one, how do cells respond to these interactions and what are the effects? As a model to answer these questions, I studied the interactions between MSCs and two breast cancer cell lines. The study of the communications between MSCs and tumor cells is an alternative to explore and understand tumor progression. MSC recruitment to the tumor is shown to favor the progression of the disease. The mechanisms of this dialogue are multiple and are the object of a great number of studies that aim at finding new therapeutic approaches. The objective of this work was to analyze the interactions between MSCs and cancer cells and evaluate the potential effects of this communication in tumor progression. First, I developed an experimental system of real time confocal microscopy in order to observe the interaction produced between MSCs and the breast carcinoma MDA-MB-231 and MCF-7 cells. I noticed the dynamic formation of tubular structures between the two different cell types and, surprisingly, the passage of mitochondria from MSCs to the cancer cells. Second, we used a 3D system of cell invasion in a collagen matrix, which we adapted for the coculture, in order to observe the effects of the interactions between the MDA-MB-231 and MSCs. In agreement with the literature, we observed an increase in the migratory potential of the cancer cells, an effect that could be linked to the transfer of mitochondria from MSCs to the cancer cells. To answer this question, I set up a protocol to specifically transfer to the cancer cells mitochondria isolated from the MSCs and test directly the functional consequences for the cancer cells. This protocol can be used to transfer mitochondria, not only from MSCs but also from other cells. This method is currently submitted to a patent process. Our results show that the transfer of MSC mitochondria to the cancer cells modifies cancer cells functional properties and increase their invasive and proliferative capacities. Concerning the metabolic activity, we noticed an increase in mitochondrial respiration and ATP production. We also observed an increase in the transcription level of enzymes related to the lipid synthesis and fatty acid oxidation. The results generated with this new protocol of mitochondria transfer show, for the first time, that mitochondria originating from MSCs can improve cellular capacities linked to the tumor progression. The role proposed by the scientific community for the interactions of MSCs with the tumor cells fits with the data generated in our work. Several questions remain open. In particular, could the transfer of mitochondria from MSCs to the cancer cells contribute to the acquisition of resistance to anti-cancer agents observed in patients? The protocol of transfer of mitochondria that we developed in the laboratory is a technique of choice and offers many advantages over other techniques such as microinjection and cytoplasmic hybrids; its implementation is simple and reproducible and can target large numbers of cells. This method opens numerous perspectives and potential applications such as the study of metabolic reprogramming. Thus, we could consider restoring the activity of dysfunctional cells by transferring mitochondria from “metabolically active” or healthy cells. In the long term, one of the applications could be transferring healthy or genetically modified mitochondria to zygotes carrying mitochondrial DNA mutations, in order to treat pathologies like infertility, neuro-degenerative diseases, cancer and premature aging

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 20/05/2019