68 research outputs found
Uni-Removal: A Semi-Supervised Framework for Simultaneously Addressing Multiple Degradations in Real-World Images
Removing multiple degradations, such as haze, rain, and blur, from real-world
images poses a challenging and illposed problem. Recently, unified models that
can handle different degradations have been proposed and yield promising
results. However, these approaches focus on synthetic images and experience a
significant performance drop when applied to realworld images. In this paper,
we introduce Uni-Removal, a twostage semi-supervised framework for addressing
the removal of multiple degradations in real-world images using a unified model
and parameters. In the knowledge transfer stage, Uni-Removal leverages a
supervised multi-teacher and student architecture in the knowledge transfer
stage to facilitate learning from pretrained teacher networks specialized in
different degradation types. A multi-grained contrastive loss is introduced to
enhance learning from feature and image spaces. In the domain adaptation stage,
unsupervised fine-tuning is performed by incorporating an adversarial
discriminator on real-world images. The integration of an extended
multi-grained contrastive loss and generative adversarial loss enables the
adaptation of the student network from synthetic to real-world domains.
Extensive experiments on real-world degraded datasets demonstrate the
effectiveness of our proposed method. We compare our Uni-Removal framework with
state-of-the-art supervised and unsupervised methods, showcasing its promising
results in real-world image dehazing, deraining, and deblurring simultaneously
Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration.
E-cadherin is a major homophilic cell-cell adhesion molecule that inhibits motility of individual cells on matrix. However, its contribution to migration of cells through cell-rich tissues is less clear. We developed an in vivo sensor of mechanical tension across E-cadherin molecules, which we combined with cell-type-specific RNAi, photoactivatable Rac, and morphodynamic profiling, to interrogate how E-cadherin contributes to collective migration of cells between other cells. Using the Drosophila ovary as a model, we found that adhesion between border cells and their substrate, the nurse cells, functions in a positive feedback loop with Rac and actin assembly to stabilize forward-directed protrusion and directionally persistent movement. Adhesion between individual border cells communicates direction from the lead cell to the followers. Adhesion between motile cells and polar cells holds the cluster together and polarizes each individual cell. Thus, E-cadherin is an integral component of the guidance mechanisms that orchestrate collective chemotaxis in vivo
Minute-Cadence Observations of the LAMOST Fields with the TMTS V. Machine Learning Classification of TMTS Catalogues of Periodic Variable Stars
Periodic variables are always of great scientific interest in astrophysics.
Thanks to the rapid advancement of modern large-scale time-domain surveys, the
number of reported variable stars has experienced substantial growth for
several decades, which significantly deepened our comprehension of stellar
structure and binary evolution. The Tsinghua University-Ma Huateng Telescopes
for Survey (TMTS) has started to monitor the LAMOST sky areas since 2020, with
a cadence of 1 minute. During the period from 2020 to 2022, this survey has
resulted in densely sampled light curves for ~ 30,000 variables of the maximum
powers in the Lomb-Scargle periodogram above the 5sigma threshold. In this
paper, we classified 11,638 variable stars into 6 main types using XGBoost and
Random Forest classifiers with accuracies of 98.83% and 98.73%, respectively.
Among them, 5301 (45.55%) variables are newly discovered, primarily consisting
of Delta Scuti stars, demonstrating the capability of TMTS in searching for
short-period variables. We cross-matched the catalogue with Gaia's second Data
Release (DR2) and LAMOST's seventh Data Release (DR7) to obtain important
physical parameters of the variables. We identified 5504 Delta Scuti stars
(including 4876 typical Delta Scuti stars and 628 high-amplitude Delta Scuti
stars), 5899 eclipsing binaries (including EA-, EB- and EW-type) and 226
candidates of RS Canum Venaticorum. Leveraging the metal abundance data
provided by LAMOST and the Galactic latitude, we discovered 8 candidates of SX
Phe stars within the class of "Delta Scuti stars". Moreover, with the help of
Gaia color-magnitude diagram, we identified 9 ZZ ceti stars.Comment: 20 pages, 14 figures, accepted to MNRA
SN 2022vqz: A Peculiar SN 2002es-like Type Ia Supernova with Prominent Early Excess Emission
We present extensive photometric and spectroscopic observations of a peculiar
type Ia supernova (SN Ia) 2022vqz. It shares many similarities with the SN
2002es-like SNe Ia, such as low luminosity (i.e.,
mag) and moderate post-peak decline rate (i.e.,
mag). The nickel mass synthesized in the explosion is estimated as
from the bolometric light curve, which is obviously
lower than normal SNe Ia. SN 2022vqz is also characterized by a slow expanding
ejecta, with Si II velocities persisting around 7000 km s since 16 days
before the peak, which is unique among all known SNe Ia. While all these
properties imply a less energetic thermonuclear explosion that should leave
considerable amount of unburnt materials, however, absent signature of unburnt
carbon in the spectra of SN 2022vqz is puzzling. A prominent early peak is
clearly detected in the - and -band light curves of ATLAS and in the
-band data of ZTF within days after the explosion. Possible mechanisms for
the early peak are discussed, including sub-Chandrasekhar mass double
detonation model and interaction of SN ejecta with circumstellar material
(CSM). We found both models face some difficulties in replicating all aspects
of the observed data. As an alternative, we propose a hybrid CONe white dwarf
as progenitor of SN 2022vqz which can simultaneously reconcile the tension
between low ejecta velocity and absence of carbon. We further discuss the
diversity of 02es-like objects and possible origins of different scenarios.Comment: 24 pages, 12 figures, submitted to MNRA
Minute-cadence Observations of the LAMOST Fields with the TMTS: III. Statistic Study of the Flare Stars from the First Two Years
Tsinghua University-Ma Huateng Telescopes for Survey (TMTS) aims to detect
fast-evolving transients in the Universe, which has led to the discovery of
thousands of short-period variables and eclipsing binaries since 2020. In this
paper, we present the observed properties of 125 flare stars identified by the
TMTS within the first two years, with an attempt to constrain their eruption
physics. As expected, most of these flares were recorded in late-type red stars
with > 2.0 mag, however, the flares associated with
bluer stars tend to be on average more energetic and have broader profiles. The
peak flux (F_peak) of the flare is found to depend strongly on the equivalent
duration (ED) of the energy release, i.e., , which is consistent with results derived from the Kepler
and Evryscope samples. This relation is likely related to the magnetic loop
emission, while -- for the more popular non-thermal electron heating model -- a
specific time evolution may be required to generate this relation. We notice
that flares produced by hotter stars have a flatter relation compared to that from cooler stars. This is related to the
statistical discrepancy in light-curve shape of flare events with different
colors. In spectra from LAMOST, we find that flare stars have apparently
stronger H alpha emission than inactive stars, especially at the low
temperature end, suggesting that chromospheric activity plays an important role
in producing flares. On the other hand, the subclass having frequent flares are
found to show H alpha emission of similar strength in their spectra to that
recorded with only a single flare but similar effective temperature, implying
that the chromospheric activity may not be the only trigger for eruptions.Comment: 17 pages, 15 figures, 2 tables, refereed version. For associated data
files, see https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/523/219
An 18.9-minute Blue Large-Amplitude Pulsator Crossing the 'Hertzsprung Gap' of Hot Subdwarfs
Blue large-amplitude pulsators (BLAPs) represent a new and rare class of hot
pulsating stars with unusually large amplitudes and short periods. Up to now,
only 24 confirmed BLAPs have been identified from more than one billion
monitored stars, including a group with pulsation period longer than
min (classical BLAPs, hereafter) and the other group with pulsation period
below min. The evolutionary path that could give rise to such kinds of
stellar configurations is unclear. Here we report on a comprehensive study of
the peculiar BLAP discovered by the Tsinghua University - Ma Huateng Telescopes
for Survey (TMTS), TMTS J035143.63+584504.2 (TMTS-BLAP-1). This new BLAP has an
18.9 min pulsation period and is similar to the BLAPs with a low surface
gravity and an extended helium-enriched envelope, suggesting that it is a
low-gravity BLAP at the shortest-period end. In particular, the long-term
monitoring data reveal that this pulsating star has an unusually large rate of
period change, P_dot/P=2.2e-6/yr. Such a significant and positive value
challenges its origins from both helium-core pre-white-dwarfs and core
helium-burning subdwarfs, but is consistent with that derived from shell
helium-burning subdwarfs. The particular pulsation period and unusual rate of
period change indicate that TMTS-BLAP-1 is at a short-lived (~10^6 yr) phase of
shell-helium ignition before the stable shell-helium burning; in other words,
TMTS-BLAP-1 is going through a "Hertzsprung gap" of hot subdwarfs.Comment: 26 pages, 12 figures, 4 tables, published on Nature Astronomy, URL:
https://www.nature.com/articles/s41550-022-01783-
A spectral data release for 104 Type II Supernovae from the Tsinghua Supernova Group
We present 206 unpublished optical spectra of 104 type II supernovae obtained
by the Xinglong 2.16m telescope and Lijiang 2.4m telescope during the period
from 2011 to 2018, spanning the phases from about 1 to 200 days after the SN
explosion. The spectral line identifications, evolution of line velocities and
pseudo equivalent widths, as well as correlations between some important
spectral parameters are presented. Our sample displays a large range in
expansion velocities. For instance, the Fe~{\sc ii} velocities measured
from spectra at days after the explosion vary from ${\rm 2000\ km\
s^{-1}}{\rm 5500\ km\ s^{-1}}{\rm 3872 \pm
949\ km\ s^{-1}}\beta\alpha\beta\alpha$
(a/e). In our sample, two objects show possibly flash-ionized features at early
phases. Besides, we noticed that multiple high-velocity components may exist on
the blue side of hydrogen lines of SN 2013ab, possibly suggesting that these
features arise from complex line forming region. All our spectra can be found
in WISeREP and Zenodo
The genetics of the mood disorder spectrum:genome-wide association analyses of over 185,000 cases and 439,000 controls
Background
Mood disorders (including major depressive disorder and bipolar disorder) affect 10-20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Despite their diagnostic distinction, multiple approaches have shown considerable sharing of risk factors across the mood disorders.
Methods
To clarify their shared molecular genetic basis, and to highlight disorder-specific associations, we meta-analysed data from the latest Psychiatric Genomics Consortium (PGC) genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-overlapping N = 609,424).
Results
Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More genome-wide significant loci from the PGC analysis of major depression than bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell-types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment – positive in bipolar disorder but negative in major depressive disorder.
Conclusions
The mood disorders share several genetic associations, and can be combined effectively to increase variant discovery. However, we demonstrate several differences between these disorders. Analysing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum
- …