32 research outputs found

    A new method for the selective quantitation of cyanogenic glycosides by membrane introduction mass spectrometry

    Get PDF
    A new method is described for the rapid, sensitive, virtually interference-free, and selective quantitation of cyanogenic glycosides in aqueous extracts using membrane introduction mass spectrometry (MIMS). Selective monitoring, by either conventional MIMS or cryotrap-MIMS, not of HCN but of the co-released ketones (acetone and butan-2-one), when performed for both the crude cassava extracts and the linamarase-NaOH-hydrolyzed extracts, is found to offer an advantageous alternative to classic spectrophotometric methods based on HCN analysis for the selective quantitation of the two cyanogenic glycosides linamarin and lotaustralin expressed as both the free HCN content and the total cyanogenic potential (total HCN).12591529153

    Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Get PDF
    Background - Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results - Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions - Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction

    Impact of oil on bacterial community structure in bioturbated sediments

    Get PDF
    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions - with tidal cycles and natural seawater - was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g21 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities

    X-ray crystal structure determination of (2R,4R,5S)-methyl-2(tert-butoxycarbonyl)-2-(tert-butyl)-5-(1,3-dithiolan-2-yl)oxazolidine-4-carboxylate

    No full text
    The absolute configuration of the title compound is determined by X-ray diffraction. The geometry of the oxazolidine is compared with known structures

    Structure determination and stereochemical assignment of (1S,3R,5R,6S)-methyl-3-(tert-butyl)-6-chloro-7-oxo-6-phenyl-2-oxa-4 azabicyclo[3.2.0]heptane-4-carboxylate

    No full text
    The absolute configuration of the title molecule is established by X-Ray diffraction analysis

    First evaluation of the Brazilian microorganisms biocatalytic potential

    No full text
    The biocatalytic potential of two novel Brazilian strains of Aspergillus niger and Rhodotorula glutinis, revealed enantioselective epoxide hydrolase activity in the asymmetrization of meso-epoxide and monosubstituted epoxides respectively. These two types of oxirane derivatives are not usually good substrates for biocatalytic enantioselective conversion. (C) 1999 Elsevier Science Ltd. All rights reserved.38102237224

    A new method for the selective quantitation of cyanogenic glycosides by membrane introduction mass spectrometry

    No full text
    A new method is described for the rapid, sensitive, virtually interference-free, and selective quantitation of cyanogenic glycosides in aqueous extracts using membrane introduction mass spectrometry (MIMS). Selective monitoring, by either conventional MIMS or cryotrap-MIMS, not of HCN but of the co-released ketones (acetone and butan-2-one), when performed for both the crude cassava extracts and the linamarase-NaOH-hydrolyzed extracts, is found to offer an advantageous alternative to classic spectrophotometric methods based on HCN analysis for the selective quantitation of the two cyanogenic glycosides linamarin and lotaustralin expressed as both the free HCN content and the total cyanogenic potential (total HCN)

    Multibioreaction methodology for Baeyer-Villiger monooxygenase monitoring

    No full text
    Baeyer-Villiger monooxygenase (BVMO) activity was monitored using traditional bio-catalytic methods and also using a multibioreaction approach. The prochiral ketones 4-methyl-cyclohexanone and 3-hexyl-cyclobutanone, among others, were used in screening for BVMO in several microorganisms, leading to the selection of Geotrichum candidum CCT 1205, Aspergillus oryzae CCT 0975, Curvularia lunata CCT 5629, Aspergillus niger CCT 5559, Trichoderma sp. CCT 5551, Cunninghamella echinulata CCT 4424 and Cunninghamella echinulata CCT 4259 as good candidates for further BVMO investigations. Additionally, a multibioreaction methodology was used to confirm the presence of BVMO, an activity previously detected by a rapid fluorescence methodology. It was therefore possible to confirm the presence of a BVMO, more precisely a cyclohexanone monooxygenase (CHMO) and also to reveal the presence of an alkene monooxygenase in Trichosporum cutaneum CCT 1903.42435536
    corecore