243 research outputs found
HEMP: High-order entropy minimization for neural network compression
We formulate the entropy of a quantized artificial neural network as a
differentiable function that can be plugged as a regularization term into the
cost function minimized by gradient descent. Our formulation scales efficiently
beyond the first order and is agnostic of the quantization scheme. The network
can then be trained to minimize the entropy of the quantized parameters, so
that they can be optimally compressed via entropy coding. We experiment with
our entropy formulation at quantizing and compressing well-known network
architectures over multiple datasets. Our approach compares favorably over
similar methods, enjoying the benefits of higher order entropy estimate,
showing flexibility towards non-uniform quantization (we use Lloyd-max
quantization), scalability towards any entropy order to be minimized and
efficiency in terms of compression. We show that HEMP is able to work in
synergy with other approaches aiming at pruning or quantizing the model itself,
delivering significant benefits in terms of storage size compressibility
without harming the model's performance
Stratosphere-troposphere coupling at inter-decadal time scales: Implications for the North Atlantic Ocean
Evidence of stratosphere-troposphere coupling at inter-decadal time scales is searched for in a 260-year simulation performed with a climate model including a state-of-the-art stratosphere. The boundary conditions of the simulation are specified according to preindustrial conditions and are kept constant from year to year. It is shown that long lasting (∼20 years) positive and negative anomalies of the northern winter stratospheric polar vortex exist in the simulation. Given that there are no externally imposed low frequency time variations, these persistent variations are due to internal dynamical processes of the modeled coupled atmosphere ocean system. By composite analysis, it is shown that the long lasting stratospheric vortex anomalies are connected through the troposphere to mean sea level pressure, surface temperature and sea ice cover anomalies. These connections are reminiscent of intra-seasonal stratosphere-troposphere coupling. Over the ocean, the surface temperature and sea ice cover anomalies are indicative of the delayed Atlantic meridional overturning circulation response to atmospheric forcing. The latter is indeed found to be anomalously strong/weak during the long lasting positive/negative stratospheric vortex anomalies, providing evidence for a potential role of the stratosphere in decadal prediction. Copyright 2012 by the American Geophysical Union
Impact of an improved radiation scheme in the MAECHAM5 General Circulation Model
In order to improve the representation of the shortwave radiative transfer in the
MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation
parameterization used in the model has been increased and extended in the
UV-B and UV-C bands. The upgraded shortwave parameterization is first validated
offline with a 4 stream discrete-ordinate line-by-line model. Thereafter, two 20-years
simulations with the MAECHAM5 middle atmosphere general circulation model are
performed to evaluate the temperature changes and the dynamical feedbacks arising
from the newly introduced parameterization. The offline clear-sky comparison of
the standard and upgraded parameterizations with the discrete ordinate model shows
considerable improvement for the upgraded parameterization in terms of shortwave
fluxes and heating rates. In the simulation with the upgraded ratiation parameterization,
we report a significant warming of almost the entire atmosphere, largest at 1 hPa
at the stratopause, and stronger zonal mean zonal winds in the middle atmosphere.
The warming at the summer stratopause alleviates the cold bias present in the model
when the standard radiation scheme is used. The stronger zonal mean zonal winds
induce a dynamical feedback that results in a dynamical warming (cooling) of the polar
winter (summer) mesosphere, caused by an increased downward (upward)circulation
in the winter (summer) hemisphere. In the troposphere, the changes in the spectral
resolution and the associated changes in the cloud optical parameters introduce a relatively
small warming and, consistenly, a moisteneing. The warming occurs mostly
in the upper troposphere and can contribute to a possible improvement of the model
temperature climatology
Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model
International audienceIn order to improve the representation of ozone absorption in the stratosphere of the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased from 4 to 6 bands. Two 20-years simulations with the general circulation model have been performed, one with the standard and the other with the newly introduced parameterization respectively, to evaluate the temperature and dynamical changes arising from the two different representations of the shortwave radiative transfer. In the simulation with the increased spectral resolution in the radiation parameterization, a significant warming of almost the entire model domain is reported. At the summer stratopause the temperature increase is about 6 K and alleviates the cold bias present in the model when the standard radiation scheme is used. These general circulation model results are consistent both with previous validation of the radiation scheme and with the offline clear-sky comparison performed in the current work with a discrete ordinate 4 stream scattering line by line radiative transfer model. The offline validation shows a substantial reduction of the daily averaged shortwave heating rate bias (1?2 K/day cooling) that occurs for the standard radiation parameterization in the upper stratosphere, present under a range of atmospheric conditions. Therefore, the 6 band shortwave radiation parameterization is considered to be better suited for the representation of the ozone absorption in the stratosphere than the 4 band parameterization. Concerning the dynamical response in the general circulation model, it is found that the reported warming at the summer stratopause induces stronger zonal mean zonal winds in the middle atmosphere. These stronger zonal mean zonal winds thereafter appear to produce a dynamical feedback that results in a dynamical warming (cooling) of the polar winter (summer) mesosphere, caused by an increased downward (upward) circulation in the winter (summer) hemisphere. In addition, the comparison of the two simulations performed with the general circulation model shows that the increase in the spectral resolution of the shortwave radiation and the associated changes in the cloud optical properties result in a warming (0.5?1 K) and moistening (3%?12%) of the upper tropical troposphere. By comparing these modeled differences with previous works, it appears that the reported changes in the solar radiation scheme contribute to improve the model mean temperature also in the troposphere
Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on vertical tracer profiles and relative vertical tracer gradients, using tropopause-referenced coordinates, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS).Observations were obtained during four tropical campaigns performed from 1999 to 2006 with the research aircraft Geophysica and have been compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL (similar to 500 m) allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data.The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone and carbon monoxide gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O-3 and H2O-O-3 scatter plots and of the Probability Distribution Function (PDF) of the H2O-O-3 pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified by their different chemical composition.The joint analysis and comparison of observed and modelled data allows to state that the model can represent the background TTL structure and its seasonal variability rather accurately. The model estimate of the thickness of the interface region between tropospheric and stratospheric regimes agrees well with average values inferred from observations. On the other hand, the measurements can be influenced by regional scale variability, local transport processes as well as deep convection, that can not be captured by the model
Northern hemisphere stratospheric pathway of different El Niño Flavors in stratosphere-resolving CMIP5 models
AbstractThe Northern Hemisphere (NH) stratospheric signals of eastern Pacific (EP) and central Pacific (CP) El Niño events are investigated in stratosphere-resolving historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), together with the role of the stratosphere in driving tropospheric El Niño teleconnections in NH climate. The large number of events in each composite addresses some of the previously reported concerns related to the short observational record. The results shown here highlight the importance of the seasonal evolution of the NH stratospheric signals for understanding the EP and CP surface impacts. CMIP5 models show a significantly warmer and weaker polar vortex during EP El Niño. No significant polar stratospheric response is found during CP El Niño. This is a result of differences in the timing of the intensification of the climatological wavenumber 1 through constructive interference, which occurs earlier in EP than CP events, related to the anomalous enhancement and earlier development of the Pacific–North American pattern in EP events. The northward extension of the Aleutian low and the stronger and eastward location of the high over eastern Canada during EP events are key in explaining the differences in upward wave propagation between the two types of El Niño. The influence of the polar stratosphere in driving tropospheric anomalies in the North Atlantic European region is clearly shown during EP El Niño events, facilitated by the occurrence of stratospheric summer warmings, the frequency of which is significantly higher in this case. In contrast, CMIP5 results do not support a stratospheric pathway for a remote influence of CP events on NH teleconnections
Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on vertical tracer profiles and relative vertical tracer gradients, using tropopause-referenced coordinates, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). <br><br> Observations were obtained during four tropical campaigns performed from 1999 to 2006 with the research aircraft Geophysica and have been compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL (~500 m) allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data. <br><br> The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone and carbon monoxide gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O<sub>3</sub> and H<sub>2</sub>O-O<sub>3</sub> scatter plots and of the Probability Distribution Function (PDF) of the H<sub>2</sub>O-O<sub>3</sub> pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified by their different chemical composition. <br><br> The joint analysis and comparison of observed and modelled data allows to state that the model can represent the background TTL structure and its seasonal variability rather accurately. The model estimate of the thickness of the interface region between tropospheric and stratospheric regimes agrees well with average values inferred from observations. On the other hand, the measurements can be influenced by regional scale variability, local transport processes as well as deep convection, that can not be captured by the model
Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling
We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO<sub>2</sub> during August 2006 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely to have originated from convective cloud east of the flights. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that convection can influence the composition of the upper troposphere above the level of main outflow for an event of deep convection close to the observation site. Model analysis also shows that deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area) has a non negligible role in determining TTL composition
- …