970 research outputs found

    Toward three-dimensional in vitro models to study neurovascular unit functions in health and disease

    Full text link
    The high metabolic demands of the brain require an efficient vascular system to be coupled with neural activity to supply adequate nutrients and oxygen. This supply is coordinated by the action of neurons, glial and vascular cells, known collectively as the neurovascular unit, which temporally and spatially regulate local cerebral blood flow through a process known as neurovascular coupling. In many neurodegenerative diseases, changes in functions of the neurovascular unit not only impair neurovascular coupling but also permeability of the blood-brain barrier, cerebral blood flow and clearance of waste from the brain. In order to study disease mechanisms, we need improved physiologically-relevant human models of the neurovascular unit. Advances towards modeling the cellular complexity of the neurovascular unit in vitro have been made using stem-cell derived organoids and more recently, vascularized organoids, enabling intricate studies of non-cell autonomous processes. Engineering and design innovations in microfluidic devices and tissue engineering are progressing our ability to interrogate the cerebrovasculature. These advanced models are being used to gain a better understanding of neurodegenerative disease processes and potential therapeutics. Continued innovation is required to build more physiologically-relevant models of the neurovascular unit encompassing both the cellular complexity and designed features to interrogate neurovascular unit functionality. Keywords: Alzheimer’s disease; cerebrovasculature; in vitro; model; neurodegeneration; neurovascular unit

    A History of common carp Cyprinus carpio (L.) in Ireland: A Review

    Get PDF
    This paper represents the most comprehensive and detailed summary of the history of common carp Cyprinus carpio (L.) in Ireland to date. It charts the earliest known introductions of the species to Irish waters, the rise in popularity of recreational angling for the species from c. 1950 onwards, the work carried out to establish the species in Ireland and explains the primary causes of their more recent distribution increase. Much of the historical research material gathered on common carp in Irish waters, including the first recorded details of introduction, is presented here for the first time.Funder: Marine Institut

    Electronic properties of bulk and thin film SrRuO3_3: a search for the metal-insulator transition

    Full text link
    We calculate the properties of the 4dd ferromagnet SrRuO3_3 in bulk and thin film form with the aim of understanding the experimentally observed metal to insulator transition at reduced thickness. Although the spatial extent of the 4dd orbitals is quite large, many experimental results have suggested that electron-electron correlations play an important role in determining this material's electronic structure. In order to investigate the importance of correlation, we use two approaches which go beyond the conventional local density approximation to density functional theory (DFT): the local spin density approximation + Hubbard UU (LSDA+UU) and the pseudopotential self-interaction correction (pseudo-SIC) methods. We find that the details of the electronic structure predicted with the LSDA do not agree with the experimental spectroscopic data for bulk and thin film SrRuO3_3. Improvement is found by including electron-electron correlations, and we suggest that bulk orthorhombic SrRuO3_3 is a {\it weakly strongly-correlated} ferromagnet whose electronic structure is best described by a 0.6 eV on-site Hubbard term, or equivalently with corrections for the self-interaction error. We also perform {\it ab initio} transport calculations that confirm that SrRuO3_3 has a negative spin polarization at the Fermi level, due to the position of the minority Ru 4dd band center. Even with correlations included in our calculations we are unable to reproduce the experimentally observed metal-insulator transition, suggesting that the electronic behavior of SrRuO3_3 ultra-thin films might be dominated by extrinsic factors such as surface disorder and defects.Comment: 15 pages, 12 figures, 3 table

    Development of an international standard set of outcome measures for patients with atrial fibrillation: a report of the International Consortium for Health Outcomes Measurement (ICHOM) atrial fibrillation working group.

    Get PDF
    AIMS: As health systems around the world increasingly look to measure and improve the value of care that they provide to patients, being able to measure the outcomes that matter most to patients is vital. To support the shift towards value-based health care in atrial fibrillation (AF), the International Consortium for Health Outcomes Measurement (ICHOM) assembled an international Working Group (WG) of 30 volunteers, including health professionals and patient representatives to develop a standardized minimum set of outcomes for benchmarking care delivery in clinical settings. METHODS AND RESULTS: Using an online-modified Delphi process, outcomes important to patients and health professionals were selected and categorized into (i) long-term consequences of disease outcomes, (ii) complications of treatment outcomes, and (iii) patient-reported outcomes. The WG identified demographic and clinical variables for use as case-mix risk adjusters. These included baseline demographics, comorbidities, cognitive function, date of diagnosis, disease duration, medications prescribed and AF procedures, as well as smoking, body mass index (BMI), alcohol intake, and physical activity. Where appropriate, and for ease of implementation, standardization of outcomes and case-mix variables was achieved using ICD codes. The standard set underwent an open review process in which over 80% of patients surveyed agreed with the outcomes captured by the standard set. CONCLUSION: Implementation of these consensus recommendations could help institutions to monitor, compare and improve the quality and delivery of chronic AF care. Their consistent definition and collection, using ICD codes where applicable, could also broaden the implementation of more patient-centric clinical outcomes research in AF

    Coil conversion to β-strand induced by dimerisation

    Get PDF
    Most molecular processes in living organisms rely on protein–protein interactions, many of which are mediated by β-sheet interfaces; this study investigates the formation of β-sheet interfaces through the conversion of coils into β-strands. Following an exhaustive search in the Protein Data Bank, the corresponding structural dimorphic fragments were extracted, characterised and analysed. Their short strand lengths and specific amino acid profiles indicate that dimorphic β-strand interfaces are likely to be less stable than standard ones and could even convert to coil interfaces if their environment changes. Moreover, the construction of a simple classifier able to discriminate between the sequences of dimorphic and standard β-strand interfaces suggests that the nature of those dimorphic sequences could be predicted, providing a novel means of identifying proteins capable of forming dimers

    Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels

    Get PDF
    The cloning of the cDNA for the α1 subunit of L-type calcium channels revealed that at least two genes (CaCh1 and CaCh2) exist which give rise to several splice variants. The expression of mRNA for these α1 subunits and the skeletal muscle α2/δ, β and γ subunits was studied in rabbit tissues and BC3H1 cells. Nucleic-acid-hybridization studies showed that the mRNA of all subunits are expressed in skeletal muscle, brain, heart and aorta. However, the α1-, β- and γ-specific transcripts had different sizes in these tissues. Smooth muscle and heart contain different splice variants of the CaCh2 gene. The α1, β and γ mRNA are expressed together in differentiated but not in proliferating BC3H1 cells. A probe specific for the skeletal muscle α2/δ subunit did not hybridize to poly(A)-rich RNA from BC3H1 cells. These results suggest that different splice variants of the genes for the α1, β and γ subunits exist in tissues containing L-type calcium channels, and that their expression is regulated in a coordinate manner

    Prediction of specificity-determining residues for small-molecule kinase inhibitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Designing small-molecule kinase inhibitors with desirable selectivity profiles is a major challenge in drug discovery. A high-throughput screen for inhibitors of a given kinase will typically yield many compounds that inhibit more than one kinase. A series of chemical modifications are usually required before a compound exhibits an acceptable selectivity profile. Rationalizing the selectivity profile for a small-molecule inhibitor in terms of the specificity-determining kinase residues for that molecule can be an important step toward the goal of developing selective kinase inhibitors.</p> <p>Results</p> <p>Here we describe S-Filter, a method that combines sequence and structural information to predict specificity-determining residues for a small molecule and its kinase selectivity profile. Analysis was performed on seven selective kinase inhibitors where a structural basis for selectivity is known. S-Filter correctly predicts specificity determinants that were described by independent groups. S-Filter also predicts a number of novel specificity determinants that can often be justified by further structural comparison.</p> <p>Conclusion</p> <p>S-Filter is a valuable tool for analyzing kinase selectivity profiles. The method identifies potential specificity determinants that are not readily apparent, and provokes further investigation at the structural level.</p

    Controlled In Meso Phase Crystallization – A Method for the Structural Investigation of Membrane Proteins

    Get PDF
    We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i) the stabilization of membrane proteins in the meso phase, (ii) the control of hydration level and additive concentration by vapor diffusion. The new technology (iii) significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv) direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR) crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII) from Halobacterium salinarum for the first time

    A systems approach to policy evaluation

    Get PDF
    There is growing interest in evaluating policy implementation in ways that grapple with the complexity of the process. This article offers an example of using systems methodology to explore how the child protection policy in child contact centres has functioned in practice. Rather than just asking the traditional evaluation question “is it working?” this study sought to understand how the policy was working and how it was interpreted as it interacted with other systems, producing conflicts, local variation and emergent effects. It illustrates how the systems concepts of ‘emergence’, ‘local rationality’, ‘socio-technical systems’ and ‘feedback for learning’ can contribute new knowledge and understanding to a complex policy evaluation problem
    corecore