89 research outputs found

    On the temperature dependence of oceanic export efficiency

    Get PDF
    Quantifying the fraction of primary production exported from the euphotic layer (termed the export efficiency ef) is a complicated matter. Studies have suggested empirical relationships with temperature which offer attractive potential for parameterization. Here we develop what is arguably the simplest mechanistic model relating the two, using established thermodynamic dependencies for primary production and respiration. It results in a single‐parameter curve that constrains the envelope of possible efficiencies, capturing the upper bounds of several ef‐T data sets. The approach provides a useful theoretical constraint on this relationship and extracts the variability in ef due to temperature but does not idealize out the remaining variability which evinces the substantial complexity of the system in question

    Modeling dispersive silver in the electrodynamic lattice-Boltzmann method using complex-conjugate pole-residue pairs

    Full text link
    The polarization density of a broadband electrodynamic lattice-Boltzmann method (ELBM) is generalized to represent frequency-dispersion of materials interacting with electromagnetic waves. The frequency-dependent refractive index and extinction coefficient are modeled using complex-conjugate pole-residue pairs in an auxiliary-differential-equation (ADE). Electric and magnetic fields are evaluated on a single lattice, ensuring a stable numerical solution up to the Nyquist limit. The electric and magnetic fields from the ELBM are compared with the electric and magnetic fields from the finite-difference-time-domain (FDTD) method. Accurate transmittance of a 100 nm silver slab is extracted from the transmitted power spectrum of a broadband Dirac-delta wave-function for photon energies ranging from 0.125-5 eV. Given this capability, the ELBM with an ADE is an accurate and computationally efficient method for modeling broadband frequency-dispersion of materials.Comment: 13 pages, 5 figures, CodeOcean samples at doi: 10.24433/CO.5926359.v

    Marine Virus-Like Particles and Microbes: A Linear Interpretation

    Get PDF
    Viruses are key players in ocean ecology and biogeochemistry, not only because of their functional roles but also partially due to their sheer abundance (Fuhrman, 1999; Wilhelm and Suttle, 1999). Because viruses cannot replicate without their hosts’ machinery, their abundance is inextricably related to that of their (mostly microbial) hosts. The relationship between viral and microbial abundances is thus of great interest

    How have recent temperature changes affected the efficiency of ocean biological carbon export?

    Get PDF
    The ocean's large, microbially mediated reservoirs of carbon are intimately connected with atmospheric CO2 and climate, yet quantifying the feedbacks between them remains an unresolved challenge. Through an idealized mechanistic model, we consider the impact of documented climate change during the past few decades on the efficiency of biological carbon export out of the surface ocean. This model is grounded in universal metabolic phenomena, describing export efficiency's temperature dependence in terms of the differential temperature sensitivity of phototrophic and heterotrophic metabolism. Temperature changes are suggested to have caused a statistically significant decrease in export efficiency of 1.5% ± 0.4% over the past 33 yr. Larger changes are suggested in the midlatitudes and Arctic. This interpretation is robust across multiple sea surface temperature and net primary production data products. The same metabolic mechanism may have resulted in much larger changes e.g., in response to the large temperature shifts between glacial and interglacial time periods

    The volume and mean depth of Earth's lakes

    Get PDF
    Global lake volume estimates are scarce, highly variable, and poorly documented. We developed a rigorous method for estimating global lake depth and volume based on the Hurst coefficient of Earth's surface, which provides a mechanistic connection between lake area and volume. Volume‐area scaling based on the Hurst coefficient is accurate and consistent when applied to lake data sets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000–202,000 km3). This volume is in the range of historical estimates (166,000–280,000 km3), but the overall mean depth of 41.8 m (95% CI 41.2–42.4 m) is significantly lower than previous estimates (62–151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles

    A unified theory for organic matter accumulation

    Get PDF
    Organic matter constitutes a key reservoir in global elemental cycles. However, our understanding of the dynamics of organic matter and its accumulation remains incomplete. Seemingly disparate hypotheses have been proposed to explain organic matter accumulation: the slow degradation of intrinsically recalcitrant substrates, the depletion to concentrations that inhibit microbial consumption, and a dependency on the consumption capabilities of nearby microbial populations. Here, using a mechanistic model, we develop a theoretical framework that explains how organic matter predictably accumulates in natural environments due to biochemical, ecological, and environmental factors. Our framework subsumes the previous hypotheses. Changes in the microbial community or the environment can move a class of organic matter from a state of functional recalcitrance to a state of depletion by microbial consumers. The model explains the vertical profile of dissolved organic carbon in the ocean and connects microbial activity at subannual timescales to organic matter turnover at millennial timescales. The threshold behavior of the model implies that organic matter accumulation may respond nonlinearly to changes in temperature and other factors, providing hypotheses for the observed correlations between organic carbon reservoirs and temperature in past earth climates

    Proliferating particle surface area via microbial decay has profound consequences for remineralisation rate: a new approach to modelling the degradation of sinking detritus in the ocean

    Get PDF
    Sinking detritus particles in the ocean help to regulate global climate by transporting organic carbon into deep waters where it is sequestered from the atmosphere. The rate at which bacteria remineralise detritus influences how deep particles sink and the length-scale of carbon sequestration. Conventional marine biogeochemical models typically represent particles as smooth spheres where remineralisation causes surface area (SA) to progressively shrink over time. In contrast, we propose that particle SA increases during degradation as microbial ectoenzymes cause a roughening of surfaces in a process similar to acid etching on previously smooth glass or metal surfaces. This concept is investigated using a novel model, SAMURAI (Surface Area Modelling Using Rubik As Inspiration), in which the biomass of individual particles is represented as a 3D matrix of cubical sub-units that degrades by progressive removal of sub-units that have faces in contact with the external environment. The model rapidly generates microscale rugosity (roughness) that profoundly increases total SA, giving rise to biomass-specific remineralisation rates that are approximately double those of conventional models. Faster remineralisation means less carbon penetrates the ocean’s interior, diminishing carbon sequestration in deep waters. Results indicate that both SA and microbial remineralisation are highly dynamic, as well as exhibiting large variability associated with particles of different porosities. Our work highlights the need for further studies, both observational and modelling, to investigate particle SA and related microbial dynamics in order to reliably represent the role of ocean biology in global biogeochemical models

    Microbial ecosystem responses to alkalinity enhancement in the North Atlantic Subtropical Gyre

    Get PDF
    In addition to reducing carbon dioxide (CO2) emissions, actively removing CO2 from the atmosphere is widely considered necessary to keep global warming well below 2°C. Ocean Alkalinity Enhancement (OAE) describes a suite of such CO2 removal processes that all involve enhancing the buffering capacity of seawater. In theory, OAE both stores carbon and offsets ocean acidification. In practice, the response of the marine biogeochemical system to OAE must be demonstrably negligible, or at least manageable, before it can be deployed at scale. We tested the OAE response of two natural seawater mixed layer microbial communities in the North Atlantic Subtropical Gyre, one at the Western gyre boundary, and one in the middle of the gyre. We conducted 4-day microcosm incubation experiments at sea, spiked with three increasing amounts of alkaline sodium salts and a 13C-bicarbonate tracer at constant pCO2. We then measured a suite of dissolved and particulate parameters to constrain the chemical and biological response to these additions. Microbial communities demonstrated occasionally measurable, but mostly negligible, responses to alkalinity enhancement. Neither site showed a significant increase in biologically produced CaCO3, even at extreme alkalinity loadings of +2,000 ÎŒmol kg−1. At the gyre boundary, alkalinity enhancement did not significantly impact net primary production rates. In contrast, net primary production in the central gyre decreased by ~30% in response to alkalinity enhancement. The central gyre incubations demonstrated a shift toward smaller particle size classes, suggesting that OAE may impact community composition and/or aggregation/disaggregation processes. In terms of chemical effects, we identify equilibration of seawater pCO2, inorganic CaCO3 precipitation, and immediate effects during mixing of alkaline solutions with seawater, as important considerations for developing experimental OAE methodologies, and for practical OAE deployment. These initial results underscore the importance of performing more studies of OAE in diverse marine environments, and the need to investigate the coupling between OAE, inorganic processes, and microbial community composition

    Temperate infection in a virus–host system previously known for virulent dynamics

    Get PDF
    The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral reproduction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus–host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host–virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host–virus densities

    Reviews and syntheses: Abrupt ocean biogeochemical change under human-made climatic forcing – warming, acidification, and deoxygenation

    Get PDF
    Abrupt changes in ocean biogeochemical variables occur as a result of human-induced climate forcing as well as those which are more gradual and occur over longer timescales. These abrupt changes have not yet been identified and quantified to the same extent as the more gradual ones. We review and synthesise abrupt changes in ocean biogeochemistry under human-induced climatic forcing. We specifically address the ocean carbon and oxygen cycles because the related processes of acidification and deoxygenation provide important ecosystem hazards. Since biogeochemical cycles depend also on the physical environment, we also describe the relevant changes in warming, circulation, and sea ice. We include an overview of the reversibility or irreversibility of abrupt marine biogeochemical changes. Important implications of abrupt biogeochemical changes for ecosystems are also discussed. We conclude that there is evidence for increasing occurrence and extent of abrupt changes in ocean biogeochemistry as a consequence of rising greenhouse gas emissions
    • 

    corecore